留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(5)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1388
  • HTML全文浏览量:  312
  • PDF下载量:  130
  • 被引次数: 0
Hengbin Liao, Liling Mo, Xiong Zhou, Zhizhong Yuan, and Jun Du, Revealing the nucleation event of Mg–Al alloy induced by Fe impurity, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1317-1321. https://doi.org/10.1007/s12613-021-2406-z
Cite this article as:
Hengbin Liao, Liling Mo, Xiong Zhou, Zhizhong Yuan, and Jun Du, Revealing the nucleation event of Mg–Al alloy induced by Fe impurity, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1317-1321. https://doi.org/10.1007/s12613-021-2406-z
引用本文 PDF XML SpringerLink
研究论文

Fe杂质诱发Mg–Al系合金异质形核

  • 通讯作者:

    杜军    E-mail: tandujun@sina.com

文章亮点

  • (1) 发现了Fe杂质元素以Al2Fe形式存在,与Mg基体之间存在潜在的匹配取向。
  • (2) 厘清了Fe杂质元素在Mg–3Al合金体系的相析出行为。
  • (3) 首次提出了Al2Fe异质形核α-Mg晶粒细化机制。
  • 镁合金具有密度低、比强度高和减震性能优异的特点,是目前最轻的金属结构材料。然而镁合金的绝对强度、塑性成形能力和耐蚀性相对较差,限制了进一步广泛应用。Fe杂质元素会显著降低镁合金的耐蚀性,但是研究表明Fe元素有利于降低Mg–Al系合金的晶粒尺寸,而针对Fe孕育细化Mg晶粒的具体机制尚未明确。本文基于聚焦离子束-透射电子显微镜技术,首次发现Fe杂质元素在Mg–3Al合金中以Al2Fe颗粒形式存在,并与Mg基体之间存在潜在的匹配取向。为进一步揭示Fe元素对Mg–Al系合金的孕育细化机制,本文引入0.02wt%Fe对Mg–3Al合金进行孕育处理。实验结果表明:经过0.02wt%Fe孕育处理后,Mg–3Al合金的平均晶粒尺寸由1135 μm下降至540 μm。基于JMatPro软件分析可知:Mg–3Al–0.02Fe合金熔体凝固过程中的相析出顺序为:Al2Fe → α-Mg → Al5Fe2 → Al13Fe4 → Mg17Al12。Fe元素的存在形式为Al–Fe化合物,仅有Al2Fe先于α-Mg相析出,并在α-Mg凝固初期稳定存在。由此总结并明确提出Fe元素孕育细化机制:对于含Fe杂质元素的Mg–Al系合金,先析出的Al2Fe颗粒为α-Mg晶粒提供有效的异质形核基底,促使晶粒细化。
  • Research Article

    Revealing the nucleation event of Mg–Al alloy induced by Fe impurity

    + Author Affiliations
    • This study revealed the nucleation event and grain refinement mechanism of Mg–Al alloy induced by Fe impurity. The following orientation relationship was observed between Al–Fe particle and α-Mg matrix in the Mg–3Al alloy containing Fe impurity using a focused ion beam aided transmission electron microscope technique: $ \text{(}\bar{\text{1}}\text{011)[01}\bar{\text{1}}\text{1}{\text{]}}_{\text{Mg}}\text{//(01}\bar{\text{1}}\text{)[011}{\text{]}}_{\text{Al}_2\text{Fe}} $. Mg–3Al alloy was inoculated by adding 0.02wt% Fe to verify the nucleating potency of the Al2Fe phase for α-Mg grain. The results indicated that Mg–3Al alloy was effectively refined with an average grain size declining from 1135 to 540 μm. Among the potential Al–Fe phases of Mg–3Al–0.02Fe alloy, only the precipitation of the Al2Fe phase occurs earlier than that of α-Mg grain, and the Al2Fe phase is stable in the nucleation stage of α-Mg grain. Therefore, the Al2Fe particle is the only available nucleating site for Mg–Al alloy with Fe impurity. The heterogeneous nucleation event of α-Mg grain on the Al2Fe particle is responsible for the grain refinement of Mg–3Al alloy inoculated by Fe.
    • loading
    • [1]
      Z. Zhang, J.H. Zhang, J. Wang, et al., Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [2]
      P. Peng, A.T. Tang, J. She, et al., Significant improvement in yield stress of Mg–Gd–Mn alloy by forming bimodal grain structure, Mater. Sci. Eng. A, 803(2021), art. No. 140569. doi: 10.1016/j.msea.2020.140569
      [3]
      J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724. doi: 10.1007/s12613-020-1987-2
      [4]
      G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
      [5]
      J. Du, Z.J. Yao, S. Han, and W.F. Li, Discussion on grain refining mechanism of AM30 alloy inoculated by MgCO3, J. Magnesium Alloys, 5(2017), No. 2, p. 181. doi: 10.1016/j.jma.2017.04.001
      [6]
      Z. Fan, F. Gao, Y. Wang, H. Men, and L. Zhou, Effect of solutes on grain refinement, Prog. Mater. Sci., 123(2022), art. No. 100809. doi: 10.1016/j.pmatsci.2021.100809
      [7]
      D. Vinotha, K. Raghukandan, U.T.S. Pillai, and B.C. Pai, Grain refining mechanisms in magnesium alloys—An overview, Trans. Indian Inst. Met., 62(2009), No. 6, p. 521. doi: 10.1007/s12666-009-0088-8
      [8]
      D. Qiu and M.X. Zhang, The nucleation crystallography and wettability of Mg grains on active Al2Y inoculants in an Mg–10wt%Y Alloy, J. Alloys Compd., 586(2014), p. 39. doi: 10.1016/j.jallcom.2013.10.042
      [9]
      C.B. Li, S.Q. Yang, J. Du, H.B. Liao, and G. Luo, Synergistic refining mechanism of Mg–3%Al alloy refining by carbon inoculation combining with Ca addition, J. Magnesium Alloys, 8(2020), No. 4, p. 1090. doi: 10.1016/j.jma.2019.12.007
      [10]
      H.B. Liao, M.Y. Zhan, C.B. Li, Z.Q. Ma, and J. Du, Grain refinement of Mg–Al alloys inoculated by MgAl2O4 powder, J. Magnesium Alloys, 9(2021), No. 4, p. 1211. doi: 10.1016/j.jma.2020.04.010
      [11]
      T. Chen, Y. Yuan, T.T. Liu, et al., Effect of Mn addition on melt purification and Fe tolerance in Mg alloys, JOM, 73(2021), No. 3, p. 892. doi: 10.1007/s11837-020-04550-5
      [12]
      R. Ambat, A.J. Davenport, G.M. Scamans, and A. Afseth, Effect of iron-containing intermetallic particles on the corrosion behaviour of aluminium, Corros. Sci., 48(2006), No. 11, p. 3455. doi: 10.1016/j.corsci.2006.01.005
      [13]
      C. Zhang, L. Wu, G.S. Huang, et al., Effects of Fe concentration on microstructure and corrosion of Mg–6Al–1Zn–xFe alloys for fracturing balls applications, J. Mater. Sci. Technol., 35(2019), No. 9, p. 2086. doi: 10.1016/j.jmst.2019.04.012
      [14]
      K. Ganjehfard, R. Taghiabadi, M.T. Noghani, and M.H. Ghoncheh, Tensile properties and hot tearing susceptibility of cast Al–Cu alloys containing excess Fe and Si, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 718. doi: 10.1007/s12613-020-2039-7
      [15]
      P. Cao, M. Qian, and D.H. StJohn, Effect of iron on grain refinement of high-purity Mg–Al alloys, Scripta Mater., 51(2004), No. 2, p. 125. doi: 10.1016/j.scriptamat.2004.03.039
      [16]
      J. Du, M.H. Wang, and W.F. Li, Effects of Fe addition and addition sequence on carbon inoculation of Mg–3%Al alloy, J. Alloys Compd., 502(2010), No. 1, p. 74. doi: 10.1016/j.jallcom.2010.04.156
      [17]
      D.H. StJohn, M. Qian, M.A. Easton, P. Cao, and Z. Hildebrand, Grain refinement of magnesium alloys, Metall. Mater. Trans. A, 36(2005), No. 7, p. 1669. doi: 10.1007/s11661-005-0030-6
      [18]
      Y.C. Pan, X.F. Liu, and H. Yang, Role of C and Fe in grain refinement of an AZ63B magnesium alloy by Al–C master alloy, J. Mater. Sci. Technol., 21(2005), No. 6, p. 822.
      [19]
      H.B. Liao, L.L. Mo, X. Zhou, B. Zhao, and J. Du, Grain refinement and improvement of mechanical properties of AZ31 magnesium alloy inoculated by in situ oxidation process, J. Mater. Res. Technol., 12(2021), p. 807. doi: 10.1016/j.jmrt.2021.03.035
      [20]
      M.X. Zhang, P.M. Kelly, M. Qian, and J.A. Taylor, Crystallography of grain refinement in Mg–Al based alloys, Acta Mater., 53(2005), No. 11, p. 3261. doi: 10.1016/j.actamat.2005.03.030
      [21]
      M.X. Zhang and P.M. Kelly, Edge-to-edge matching model for predicting orientation relationships and habit planes–The improvements, Scripta Mater., 52(2005), No. 10, p. 963. doi: 10.1016/j.scriptamat.2005.01.040
      [22]
      Y.C. Lee, A.K. Dahle, and D.H. StJohn, The role of solute in grain refinement of magnesium, Metall. Mater. Trans. A, 31(2000), No. 11, p. 2895. doi: 10.1007/BF02830349
      [23]
      D.H. StJohn, P. Cao, M. Qian, and M.A. Easton, A brief history of the development of grain refinement technology for cast magnesium alloys, [in] Magnesium Technology 2013, Springer, Cham, 2013, p. 3.

    Catalog


    • /

      返回文章
      返回