Cite this article as: |
Zicheng Xin, Jiangshan Zhang, Yu Jin, Jin Zheng, and Qing Liu, Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 335-344. https://doi.org/10.1007/s12613-021-2409-9 |
张江山 E-mail: zjsustb@163.com
刘青 E-mail: qliu@ustb.edu.cn
[1] |
J. Liu, Artificial intelligence drives changes in metallurgical industry, Iron Steel, 55(2020), No. 6, p. 1. doi: 10.13228/j.boyuan.issn0449-749x.20200191
|
[2] |
J. Li, LF Refining Technology, Metallurgical Industry Press, Beijing, 2012.
|
[3] |
P. Yu, D. P. Zhan, Z. H. Jiang, D. L. Li, X. D. Yin, and Z. G. Ma, Development of a terminal composition prediction model for steel refining with ladle furnace, J. Mater. Metall., 5(2006), No. 1, p. 20.
|
[4] |
G.B. Li, C.L. Zhao, S.H. Zhao, L.J. Wang, and W.W. Zhang, Development of LF refining composition prediction model, Angang Technol., 2009(4), p. 26.
|
[5] |
N.K. Nath, K. Mandal, A.K. Singh, B. Basu, C. Bhanu, S. Kumar, and A. Ghosh, Ladle furnace on-line reckoner for prediction and control of steel temperature and composition, Ironmaking Steelmaking, 33(2006), No. 2, p. 140. doi: 10.1179/174328106X80082
|
[6] |
W.S. Cheng, S.G. Tang, Q.Z. Liu, and M.R. Fei, R&D of the ladle furnace mathematic model, [in] Proceedings of International Conference on Machine Learning and Cybernetics, Beijing, p. 566.
|
[7] |
M. Seike, R. Sakao, H. Dei, H. Yamaguchi, T. Muroi, and S. Tsuda, Development of LFV guide control system using the expert system, CAMP-ISIJ, 7(1994), No. 5, p. 1260.
|
[8] |
X.W. Gao, A.A. Zhang, and Q.L. Wei, Neural network based prediction of endpoint in ladle refining process, J. Northeast. Univ. Nat. Sci., 26(2005), No. 8, p. 726.
|
[9] |
Z. Xu and Z.Z. Mao, Analysis and prediction of influencing factor on element recovery in ladle furnace, Iron Steel, 47(2012), No. 3, p. 34.
|
[10] |
G.B. Huang, Z. Bai, L.L.C. Kasun, and C.M. Vong, Local receptive fields based extreme learning machine, IEEE Comput. Intell. Mag., 10(2015), No. 2, p. 18. doi: 10.1109/MCI.2015.2405316
|
[11] |
V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, Berlin, 1995.
|
[12] |
V. N. Vapnik, Statistical Learning Theory, John Wiley and Sons, New York, 1998.
|
[13] |
L. Lin and J.Q. Zeng, Consideration of green intelligent steel processes and narrow window stability control technology on steel quality, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1264. doi: 10.1007/s12613-020-2246-2
|
[14] |
S.H. Kwon, D.G. Hong, and C.H. Yim, Prediction of hot ductility of steels from elemental composition and thermal history by deep neural networks, Ironmaking Steelmaking, 47(2020), No. 10, p. 1176. doi: 10.1080/03019233.2019.1699358
|
[15] |
J.P. Yang, J.S. Zhang, W.D. Guo, S. Gao, and Q. Liu, End-point temperature preset of molten steel in the final refining unit based on an integration of deep neural network and multi-process operation simulation, ISIJ Int., 61(2021), No. 7, p. 2100. doi: 10.2355/isijinternational.ISIJINT-2020-540
|
[16] |
I. Mohanty, R. Banerjee, A. Santara, S. Kundu, and P. Mitra, Prediction of properties over the length of the coil during thermo-mechanical processing using DNN, Ironmaking Steelmaking, 48(2021), No. 8, p. 953. doi: 10.1080/03019233.2020.1848303
|
[17] |
S.W. Wu, J. Yang, and G.M. Cao, Prediction of the Charpy V-Notch impact energy of low carbon steel using a shallow neural network and deep learning, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1309. doi: 10.1007/s12613-020-2168-z
|
[18] |
Z.C. Xin, J.S. Zhang, J.G. Zhang, Y. Jin, J. Zheng, and Q. Liu, Mathematical modelling and plant trial on slagging regime in a ladle furnace for high-efficiency desulphurization, Ironmaking Steelmaking, 48(2021), No. 9, p. 1123. doi: 10.1080/03019233.2021.1935143
|
[19] |
K. Pearson, Mathematical contributions to the theory of evolution. III. regression, heredity, and panmixia, Philos. Trans. R. Soc. London, Ser. A, 187, p. 253.
|
[20] |
Z. Zhang, L.L. Cao, W.H. Lin, J.K. Sun, X.M. Feng, and Q. Liu, Improved prediction model for BOF end-point manganese content based on IPSO-RELM method, Chin. J. Eng., 41(2019), No. 8, p. 1052. doi: 10.13374/j.issn2095-9389.2019.08.011
|
[21] |
K.X. Zhou, W.H. Lin, J.K. Sun, X.M. Feng, W. Fang, and Q. Liu, A prediction model to calculate Mn yield during BOF alloying process using improved extreme learning machine, J. Cent. South Univ. (Sci. Technol.), 52(2021), No. 5, p. 1399. doi: 10.11817/j.issn.1672-7207.2021.05.001
|
[22] |
S. Valle, W.H. Li, and S.J. Qin, Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods, Ind. Eng. Chem. Res., 38(1999), No. 11, p. 4389. doi: 10.1021/ie990110i
|
[23] |
K. Wu, X.Z. Liu, X.X. Zhang, and Y. Miao, Feature extraction of hot strip rolling data based on PCA-DBN, Metall. Ind. Autom., 44(2020), No. 3, p. 21.
|
[24] |
Y.L. Huang, Y.F. Liu, H. Huang, and B.L. Zheng, Prediction model of TPC reception iron amount based on PCA-GA-BP, Control Eng. China, 16(2009), No. 4, p. 446.
|
[25] |
C. Chen, N. Wang, and M. Chen, Prediction model of end-point phosphorus content in consteel electric furnace based on PCA-extra tree model, ISIJ Int., 61(2021), No. 6, p. 1908. doi: 10.2355/isijinternational.ISIJINT-2020-615
|
[26] |
Subagyo and G.A. Brooks, Online monitoring of dynamic slag behavior in ladle metallurgy, ISIJ Int., 43(2003), No. 8, p. 1286. doi: 10.2355/isijinternational.43.1286
|
[27] |
G.E. Hinton and R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 313(2006), No. 5786, p. 504. doi: 10.1126/science.1127647
|
[28] |
Z. H. Zhou, Machine Learning, Tsinghua University Press, Beijing, 2016.
|
[29] |
Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature, 521(2015), No. 7553, p. 436. doi: 10.1038/nature14539
|
[30] |
G.W. Song, B.A. Tama, J. Park, J.Y. Hwang, J. Bang, S.J. Park, and S. Lee, Temperature control optimization in a steel-making continuous casting process using a multimodal deep learning approach, Steel Res. Int., 90(2019), No. 12, art. No. 1900321. doi: 10.1002/srin.201900321
|
[31] |
C.A. Myers and T. Nakagaki, Prediction of nucleation lag time from elemental composition and temperature for iron and steelmaking slags using deep neural networks, ISIJ Int., 59(2019), No. 4, p. 687. doi: 10.2355/isijinternational.ISIJINT-2018-338
|
[32] |
S. Feng, H.Y. Zhou, and H.B. Dong, Using deep neural network with small dataset to predict material defects, Mater. Des., 162(2019), p. 300. doi: 10.1016/j.matdes.2018.11.060
|
[33] |
M. Ranzato, F.J. Huang, Y.L. Boureau, and Y. LeCun, Unsupervised learning of invariant feature hierarchies with applications to object recognition, [in] 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, p. 1.
|
[34] |
S.H. Wang, P. Phillips, Y.X. Sui, B. Liu, M. Yang, and H. Cheng, Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling, J. Med. Syst., 42(2018), No. 85, art. No. 85(2018)
|
[35] |
N. Qian, On the momentum term in gradient descent learning algorithms, Neural Netw., 12(1999), No. 1, p. 145. doi: 10.1016/S0893-6080(98)00116-6
|
[36] |
I. Loshchilov and F. Hutter, Decoupled weight decay regularization, [in] 7th International Conference on Learning Representations (ICLR), New Orleans, 2019, p. 1.
|
[37] |
M.H. Zhao, S.S. Zhong, X.Y. Fu, B.P. Tang, and M. Pecht, Deep residual shrinkage networks for fault diagnosis, IEEE Trans. Ind. Inf., 16(2020), No. 7, p. 4681. doi: 10.1109/TII.2019.2943898
|
[38] |
S. Samarasinghe, Neural Networks for Applied Sciences and Engineering, Auerbach Publications, New York, 2006.
|