Cite this article as: |
Xuefeng Zhangand Shuqiang Jiao, Modified Al negative electrode for stable high-capacity Al–Te batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 896-904. https://doi.org/10.1007/s12613-022-2410-y |
焦树强 E-mail: sjiao@ustb.edu.cn
Supplementary Informations12613-022-2410-y.docx |
[1] |
L. Kong, C. Yan, J.Q. Huang, M.Q. Zhao, M.M, Titirici, R. Xiang, and Q. Zhang, A review of advanced energy materials for magnesium–sulfur batteries, Energy Environ. Mater.,, 1(2018), No. 3, p. 100. doi: 10.1002/eem2.12012
|
[2] |
B.T. McAllister, L.T. Kyne, T.B. Schon, and D.S. Seferos, Potential for disruption with organic magnesium-ion batteries, Joule, 3(2019), No. 3, p. 620. doi: 10.1016/j.joule.2018.12.005
|
[3] |
T. Xiong, Y.X. Zhang, W.S.V. Lee, and J.M. Xue, Defect engineering in manganese-based oxides for aqueous rechargeable zinc-ion batteries: A review, Adv. Energy Mater., 10(2020), No. 34, art. No. 2001769. doi: 10.1002/aenm.202001769
|
[4] |
G.Z. Fang, J. Zhou, A.Q. Pan, and S.Q. Liang, Recent advances in aqueous zinc-ion batteries, ACS Energy Lett., 3(2018), No. 10, p. 2480. doi: 10.1021/acsenergylett.8b01426
|
[5] |
J.G. Tu, W.L. Song, H.P. Lei, Z.J. Yu, L.L. Chen, M.Y. Wang, and S.Q. Jiao, Nonaqueous rechargeable aluminum batteries: Progresses, challenges, and perspectives, Chem. Rev., 121(2021), No. 8, p. 4903. doi: 10.1021/acs.chemrev.0c01257
|
[6] |
K.Q. Zhang, K.O. Kirlikovali, J.M. Suh, J.W. Choi, H.W. Jang, R.S. Varma, O.K. Farha, and M. Shokouhimehr, Recent advances in rechargeable aluminum-ion batteries and considerations for their future progress, ACS Appl. Energy Mater., 3(2020), No. 7, p. 6019. doi: 10.1021/acsaem.0c00957
|
[7] |
H.B. Sun, W. Wang, Z.J. Yu, Y. Yuan, S. Wang, and S.Q. Jiao, A new aluminium-ion battery with high voltage, high safety and low cost, Chem. Commun., 51(2015), No. 59, p. 11892. doi: 10.1039/C5CC00542F
|
[8] |
H. Chen, F. Guo, Y.J. Liu, T.Q. Huang, B.N. Zheng, N. Ananth, Z. Xu, W.W. Gao, and C. Gao, A defect-free principle for advanced graphene cathode of aluminum-ion battery, Adv. Mater., 29(2017), No. 12, art. No. 1605958. doi: 10.1002/adma.201605958
|
[9] |
J.F. Li, K.S. Hui, S.P. Ji, C.Y. Zha, C.Z. Yuan, S.X. Wu, F. Bin, X. Fan, F.M. Chen, Z.P. Shao, and K.N. Hui, Electrodeposition of a dendrite-free 3D Al anode for improving cycling of an aluminum–graphite battery, Carbon Energy, 2021. DOI: 10.1002/cey2.155
|
[10] |
X.L. Xu, K.S. Hui, K.N. Hui, J.X. Shen, G.W. Zhou, J.H. Liu, and Y.C. Sun, Engineering strategies for low-cost and high-power density aluminum-ion batteries, Chem. Eng. J., 418(2021), art. No. 129385. doi: 10.1016/j.cej.2021.129385
|
[11] |
S. Wang, Z.J. Yu, J.G. Tu, J.X. Wang, D.H. Tian, Y.J. Liu, and S.Q. Jiao, A novel aluminum-ion battery: Al/AlCl3–[EMIm]Cl/Ni3S2@graphene, Adv. Energy Mater., 6(2016), No. 13, art. No. 1600137. doi: 10.1002/aenm.201600137
|
[12] |
X.F. Zhang, S. Wang, J.G. Tu, G.H. Zhang, S.J. Li, D.H. Tian, and S.Q. Jiao, Flower-like vanadium suflide/reduced graphene oxide composite: An energy storage material for aluminum-ion batteries, ChemSusChem, 11(2018), No. 4, p. 709. doi: 10.1002/cssc.201702270
|
[13] |
H.P. Lei, M.Y. Wang, J.G. Tu, and S.Q. Jiao, Single-crystal and hierarchical VSe2 as an aluminum-ion battery cathode, Sustainable Energy Fuels, 3(2019), No. 10, p. 2717. doi: 10.1039/C9SE00288J
|
[14] |
J.L. Jiang, H. Li, T. Fu, B.J. Hwang, X. Li, and J.B. Zhao, One-dimensional Cu2–xSe nanorods as the cathode material for high-performance aluminum-ion battery, ACS Appl. Mater. Interfaces, 10(2018), No. 21, p. 17942. doi: 10.1021/acsami.8b03259
|
[15] |
Y.Q. Du, B.Y. Zhang, W.Y. Zhang, H.X. Jin, J.Y. Qin, J.Q. Wan, J.X. Zhang, and G.W. Chen, Interfacial engineering of Bi2Te3/Sb2Te3 heterojunction enables high-energy cathode for aluminum batteries, Energy Storage Mater., 38(2021), p. 231. doi: 10.1016/j.ensm.2021.03.012
|
[16] |
Z.J. Yu, S.Q. Jiao, J.G. Tu, Y.W. Luo, W.L. Song, H.D. Jiao, M.Y. Wang, H.S. Chen, and D.N. Fang, Rechargeable nickel telluride/aluminum batteries with high capacity and enhanced cycling performance, ACS Nano, 14(2020), No. 3, p. 3469. doi: 10.1021/acsnano.9b09550
|
[17] |
X.F. Zhang, S.Q. Jiao, J.G. Tu, W.L. Song, X. Xiao, S.J. Li, M.Y. Wang, H.P. Lei, D.H. Tian, H.S. Chen, and D.N. Fang, Rechargeable ultrahigh-capacity tellurium–aluminum batteries, Energy Environ. Sci., 12(2019), No. 6, p. 1918. doi: 10.1039/C9EE00862D
|
[18] |
X.F. Zhang, M.Y. Wang, J.G. Tu, and S.Q. Jiao, Hierarchical N-doped porous carbon hosts for stabilizing tellurium in promoting Al–Te batteries, J. Energy Chem., 57(2021), p. 378. doi: 10.1016/j.jechem.2020.09.015
|
[19] |
X.F. Zhang, J.G. Tu, M.Y. Wang, and S.Q. Jiao, A strategy for massively suppressing the shuttle effect in rechargeable Al–Te batteries, Inorg. Chem. Front., 7(2020), No. 20, p. 4000. doi: 10.1039/D0QI00841A
|
[20] |
Q. Zhao, M.J. Zachman, W.I. Al Sadat, J. Zheng, L.F. Kourkoutis, and L. Archer, Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells, Sci. Adv., 4(2018), No. 11, p. 8131. doi: 10.1126/sciadv.aau8131
|
[21] |
X. Ke, S.F. Guo, G.S. Zhang, X. Zhou, L. Xiao, G.Z. Hao, N. Wang, and W. Jiang, Safe preparation, energetic performance and reaction mechanism of corrosion-resistant Al/PVDF nanocomposite films, J. Mater. Chem. A, 6(2018), No. 36, p. 17713. doi: 10.1039/C8TA05758C
|
[22] |
L.M. Jin, J. Ni, C. Shen, F.L. Peng, Q. Wu, D.H. Ye, J.S. Zheng, G.R. Li, C.M. Zhang, Z.P. Li, and J.P. Zheng, Metallically conductive TiB2 as a multi-functional separator modifier for improved lithium sulfur batteries, J. Power Sources, 448(2020), art. No. 227336. doi: 10.1016/j.jpowsour.2019.227336
|
[23] |
J.C. Ding, T.F. Zhang, J.M. Yun, K.H. Kim, and Q.M. Wang, Effect of Cu addition on the microstructure and properties of TiB2 films deposited by a hybrid system combining high power impulse magnetron sputtering and pulsed dc magnetron sputtering, Surf. Coat. Technol., 344(2018), p. 441. doi: 10.1016/j.surfcoat.2018.03.026
|
[24] |
C.C. Li, X.B. Liu, L. Zhu, R.Z. Huang, M.W. Zhao, L.Q. Xu, and Y.T. Qian, Conductive and polar titanium boride as a sulfur host for advanced lithium–sulfur batteries, Chem. Mater., 30(2018), No. 20, p. 6969. doi: 10.1021/acs.chemmater.8b01352
|
[25] |
J.Y. Song, H.H. Lee, Y.Y. Wang, and C.C. Wan, Two- and three-electrode impedance spectroscopy of lithium-ion batteries, J. Power Sources, 111(2002), No. 2, p. 255. doi: 10.1016/S0378-7753(02)00310-5
|
[26] |
S. Sen, K.P, Muthe, N. Joshi, S.C. Gadkari, S.K. Gupta, Jagannath, M. Roy, S.K. Deshpande, and J.V. Yakhmi, Room temperature operating ammonia sensor based on tellurium thin films, Sens. Actuators B, 98(2004), No. 2-3, p. 154. doi: 10.1016/j.snb.2003.10.004
|