留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(5)

数据统计

分享

计量
  • 文章访问数:  1846
  • HTML全文浏览量:  481
  • PDF下载量:  88
  • 被引次数: 0
Xuefeng Zhangand Shuqiang Jiao, Modified Al negative electrode for stable high-capacity Al–Te batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 896-904. https://doi.org/10.1007/s12613-022-2410-y
Cite this article as:
Xuefeng Zhangand Shuqiang Jiao, Modified Al negative electrode for stable high-capacity Al–Te batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 896-904. https://doi.org/10.1007/s12613-022-2410-y
引用本文 PDF XML SpringerLink
研究论文

用于稳定的高容量铝–碲电池的改性铝负极

  • 通讯作者:

    焦树强    E-mail: sjiao@ustb.edu.cn

  • 金属铝电池(MABs)具有高能量密度、资源丰富、成本低、安全和环境友好等特点,被认为是极具潜力的大规模储能设备,而Te被认为是MABs的潜在正极材料。然而,由于碲的化学和电化学溶解以及其溶解产物在铝负极上的化学沉淀所引起的关键问题,导致了Al–Te电池循环稳定性差和放电容量低。本文提出了一种高效的基于TiB2的改性层(Al/TB)来解决金属铝电极的关键问题,从而实现了Al/TB负极的低电压迟滞和长循环寿命。基于Al/TB负极的Al–Te电池的电化学性能得到了极大的改善。此外,还引入了改性的隔膜技术以与设计中的Al/TB负极相匹配。因此,Al–Te电池达到了创纪录的长达500个循环的长期循环稳定性。这一简单的策略也为其他高能量密度的电池系统,如Al–S和Al–Se电池,开辟了一条潜在的路线。
  • Research Article

    Modified Al negative electrode for stable high-capacity Al–Te batteries

    + Author Affiliations
    • Metal aluminum batteries (MABs) are considered potential large-scale energy storage devices because of their high energy density, resource abundance, low cost, safety, and environmental friendliness. Given their high electrical conductivity, high theoretical specific capacity, and high discharge potential, Te is considered a potential positive electrode material for MABs. Nonetheless, the critical issues induced by the chemical and electrochemical dissolution of tellurium and subsequent chemical precipitation on bare Al negative electrodes result in poor cycle stability and low discharge capacity of Al–Te batteries. Here an efficient TiB2-based modified layer has been proposed to address bare Al electrodes (Al/TB). Consequently, the low-voltage hysteresis and long cycle life of the Al/TB negative electrode have been achieved. In addition, the electrochemical performance of the Al–Te battery based on the Al/TB negative electrode is dramatically improved. Furthermore, the modified separator technology is introduced to match with the as-designed Al/TB negative electrode. Therefore, the record-setting long-term cycle stability of up to 500 cycles has been achieved in the Al–Te battery. The facile strategy also opens a potential route for other high-energy density battery systems, such as Al–S and Al–Se batteries.
    • loading
    • Supplementary Informations12613-022-2410-y.docx
    • [1]
      L. Kong, C. Yan, J.Q. Huang, M.Q. Zhao, M.M, Titirici, R. Xiang, and Q. Zhang, A review of advanced energy materials for magnesium–sulfur batteries, Energy Environ. Mater.,, 1(2018), No. 3, p. 100. doi: 10.1002/eem2.12012
      [2]
      B.T. McAllister, L.T. Kyne, T.B. Schon, and D.S. Seferos, Potential for disruption with organic magnesium-ion batteries, Joule, 3(2019), No. 3, p. 620. doi: 10.1016/j.joule.2018.12.005
      [3]
      T. Xiong, Y.X. Zhang, W.S.V. Lee, and J.M. Xue, Defect engineering in manganese-based oxides for aqueous rechargeable zinc-ion batteries: A review, Adv. Energy Mater., 10(2020), No. 34, art. No. 2001769. doi: 10.1002/aenm.202001769
      [4]
      G.Z. Fang, J. Zhou, A.Q. Pan, and S.Q. Liang, Recent advances in aqueous zinc-ion batteries, ACS Energy Lett., 3(2018), No. 10, p. 2480. doi: 10.1021/acsenergylett.8b01426
      [5]
      J.G. Tu, W.L. Song, H.P. Lei, Z.J. Yu, L.L. Chen, M.Y. Wang, and S.Q. Jiao, Nonaqueous rechargeable aluminum batteries: Progresses, challenges, and perspectives, Chem. Rev., 121(2021), No. 8, p. 4903. doi: 10.1021/acs.chemrev.0c01257
      [6]
      K.Q. Zhang, K.O. Kirlikovali, J.M. Suh, J.W. Choi, H.W. Jang, R.S. Varma, O.K. Farha, and M. Shokouhimehr, Recent advances in rechargeable aluminum-ion batteries and considerations for their future progress, ACS Appl. Energy Mater., 3(2020), No. 7, p. 6019. doi: 10.1021/acsaem.0c00957
      [7]
      H.B. Sun, W. Wang, Z.J. Yu, Y. Yuan, S. Wang, and S.Q. Jiao, A new aluminium-ion battery with high voltage, high safety and low cost, Chem. Commun., 51(2015), No. 59, p. 11892. doi: 10.1039/C5CC00542F
      [8]
      H. Chen, F. Guo, Y.J. Liu, T.Q. Huang, B.N. Zheng, N. Ananth, Z. Xu, W.W. Gao, and C. Gao, A defect-free principle for advanced graphene cathode of aluminum-ion battery, Adv. Mater., 29(2017), No. 12, art. No. 1605958. doi: 10.1002/adma.201605958
      [9]
      J.F. Li, K.S. Hui, S.P. Ji, C.Y. Zha, C.Z. Yuan, S.X. Wu, F. Bin, X. Fan, F.M. Chen, Z.P. Shao, and K.N. Hui, Electrodeposition of a dendrite-free 3D Al anode for improving cycling of an aluminum–graphite battery, Carbon Energy, 2021. DOI: 10.1002/cey2.155
      [10]
      X.L. Xu, K.S. Hui, K.N. Hui, J.X. Shen, G.W. Zhou, J.H. Liu, and Y.C. Sun, Engineering strategies for low-cost and high-power density aluminum-ion batteries, Chem. Eng. J., 418(2021), art. No. 129385. doi: 10.1016/j.cej.2021.129385
      [11]
      S. Wang, Z.J. Yu, J.G. Tu, J.X. Wang, D.H. Tian, Y.J. Liu, and S.Q. Jiao, A novel aluminum-ion battery: Al/AlCl3–[EMIm]Cl/Ni3S2@graphene, Adv. Energy Mater., 6(2016), No. 13, art. No. 1600137. doi: 10.1002/aenm.201600137
      [12]
      X.F. Zhang, S. Wang, J.G. Tu, G.H. Zhang, S.J. Li, D.H. Tian, and S.Q. Jiao, Flower-like vanadium suflide/reduced graphene oxide composite: An energy storage material for aluminum-ion batteries, ChemSusChem, 11(2018), No. 4, p. 709. doi: 10.1002/cssc.201702270
      [13]
      H.P. Lei, M.Y. Wang, J.G. Tu, and S.Q. Jiao, Single-crystal and hierarchical VSe2 as an aluminum-ion battery cathode, Sustainable Energy Fuels, 3(2019), No. 10, p. 2717. doi: 10.1039/C9SE00288J
      [14]
      J.L. Jiang, H. Li, T. Fu, B.J. Hwang, X. Li, and J.B. Zhao, One-dimensional Cu2–xSe nanorods as the cathode material for high-performance aluminum-ion battery, ACS Appl. Mater. Interfaces, 10(2018), No. 21, p. 17942. doi: 10.1021/acsami.8b03259
      [15]
      Y.Q. Du, B.Y. Zhang, W.Y. Zhang, H.X. Jin, J.Y. Qin, J.Q. Wan, J.X. Zhang, and G.W. Chen, Interfacial engineering of Bi2Te3/Sb2Te3 heterojunction enables high-energy cathode for aluminum batteries, Energy Storage Mater., 38(2021), p. 231. doi: 10.1016/j.ensm.2021.03.012
      [16]
      Z.J. Yu, S.Q. Jiao, J.G. Tu, Y.W. Luo, W.L. Song, H.D. Jiao, M.Y. Wang, H.S. Chen, and D.N. Fang, Rechargeable nickel telluride/aluminum batteries with high capacity and enhanced cycling performance, ACS Nano, 14(2020), No. 3, p. 3469. doi: 10.1021/acsnano.9b09550
      [17]
      X.F. Zhang, S.Q. Jiao, J.G. Tu, W.L. Song, X. Xiao, S.J. Li, M.Y. Wang, H.P. Lei, D.H. Tian, H.S. Chen, and D.N. Fang, Rechargeable ultrahigh-capacity tellurium–aluminum batteries, Energy Environ. Sci., 12(2019), No. 6, p. 1918. doi: 10.1039/C9EE00862D
      [18]
      X.F. Zhang, M.Y. Wang, J.G. Tu, and S.Q. Jiao, Hierarchical N-doped porous carbon hosts for stabilizing tellurium in promoting Al–Te batteries, J. Energy Chem., 57(2021), p. 378. doi: 10.1016/j.jechem.2020.09.015
      [19]
      X.F. Zhang, J.G. Tu, M.Y. Wang, and S.Q. Jiao, A strategy for massively suppressing the shuttle effect in rechargeable Al–Te batteries, Inorg. Chem. Front., 7(2020), No. 20, p. 4000. doi: 10.1039/D0QI00841A
      [20]
      Q. Zhao, M.J. Zachman, W.I. Al Sadat, J. Zheng, L.F. Kourkoutis, and L. Archer, Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells, Sci. Adv., 4(2018), No. 11, p. 8131. doi: 10.1126/sciadv.aau8131
      [21]
      X. Ke, S.F. Guo, G.S. Zhang, X. Zhou, L. Xiao, G.Z. Hao, N. Wang, and W. Jiang, Safe preparation, energetic performance and reaction mechanism of corrosion-resistant Al/PVDF nanocomposite films, J. Mater. Chem. A, 6(2018), No. 36, p. 17713. doi: 10.1039/C8TA05758C
      [22]
      L.M. Jin, J. Ni, C. Shen, F.L. Peng, Q. Wu, D.H. Ye, J.S. Zheng, G.R. Li, C.M. Zhang, Z.P. Li, and J.P. Zheng, Metallically conductive TiB2 as a multi-functional separator modifier for improved lithium sulfur batteries, J. Power Sources, 448(2020), art. No. 227336. doi: 10.1016/j.jpowsour.2019.227336
      [23]
      J.C. Ding, T.F. Zhang, J.M. Yun, K.H. Kim, and Q.M. Wang, Effect of Cu addition on the microstructure and properties of TiB2 films deposited by a hybrid system combining high power impulse magnetron sputtering and pulsed dc magnetron sputtering, Surf. Coat. Technol., 344(2018), p. 441. doi: 10.1016/j.surfcoat.2018.03.026
      [24]
      C.C. Li, X.B. Liu, L. Zhu, R.Z. Huang, M.W. Zhao, L.Q. Xu, and Y.T. Qian, Conductive and polar titanium boride as a sulfur host for advanced lithium–sulfur batteries, Chem. Mater., 30(2018), No. 20, p. 6969. doi: 10.1021/acs.chemmater.8b01352
      [25]
      J.Y. Song, H.H. Lee, Y.Y. Wang, and C.C. Wan, Two- and three-electrode impedance spectroscopy of lithium-ion batteries, J. Power Sources, 111(2002), No. 2, p. 255. doi: 10.1016/S0378-7753(02)00310-5
      [26]
      S. Sen, K.P, Muthe, N. Joshi, S.C. Gadkari, S.K. Gupta, Jagannath, M. Roy, S.K. Deshpande, and J.V. Yakhmi, Room temperature operating ammonia sensor based on tellurium thin films, Sens. Actuators B, 98(2004), No. 2-3, p. 154. doi: 10.1016/j.snb.2003.10.004

    Catalog


    • /

      返回文章
      返回