留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  2038
  • HTML全文浏览量:  939
  • PDF下载量:  46
  • 被引次数: 0
Endian Fan, Yong Li, Yang You, and Xuewei Lü, Effect of crystallographic orientation on crack growth behaviour of HSLA steel, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1532-1542. https://doi.org/10.1007/s12613-022-2415-6
Cite this article as:
Endian Fan, Yong Li, Yang You, and Xuewei Lü, Effect of crystallographic orientation on crack growth behaviour of HSLA steel, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1532-1542. https://doi.org/10.1007/s12613-022-2415-6
引用本文 PDF XML SpringerLink
研究论文

晶体取向对高强低合金钢应力腐蚀裂纹扩展行为的影响研究

  • 通讯作者:

    李永    E-mail: liyong2020@cqu.edu.cn

文章亮点

  • (1)从三维角度研究了晶体取向对高强度低合金钢裂纹扩展行为的影响。
  • (2)基于裂纹尖端力学–电化学相互作用研究了高强度低合金钢的裂纹扩展行为。
  • (3)从三维角度分析了断裂层和载荷方向对裂纹扩展行为的影响。
  • 低合金钢被广泛应用于海洋工程设备,其服役安全性受环境腐蚀制约。高强低合金钢在服役过程中除了受海风、海浪等环境作用力,还需承受自身重力和工作运行带来的应力,容易诱发应力腐蚀并导致断裂失效。当裂纹萌生后。高强低合金钢腐蚀断裂行为受裂纹尖端力学–电化学行为控制,其腐蚀动力学不同于金属表面,因此对应力腐蚀裂纹扩展行为的研究需要从裂纹尖端力学–电化学交互作用角度展开。本文基于裂纹尖端力学–电化学交互作用,从三维角度研究了高强低合金E690钢晶体取向对裂纹扩展行为的影响。结果表明,高强低合金钢晶体取向的变化对裂纹尖端电化学反应和裂纹扩展机制没有影响,但会改变裂纹扩展速率。当应力加载方向与轧制方向平行,同时断裂层与横向–法向面平行时,裂纹扩展速度最慢,其值为0.0185 mm·h–1。当载荷方向与法线方向平行,断裂层平行于轧制–横向面时,裂纹扩展速率最高,其值为0.0309 mm·h–1,这种现象归因于E690钢板在轧制方向、法向方向和横向方向上的不同组织结构和力学性能。
  • Research Article

    Effect of crystallographic orientation on crack growth behaviour of HSLA steel

    + Author Affiliations
    • In this work, the crack growth behaviours of high strength low alloy (HSLA) steel E690 with three crystallographic orientations (the rolling direction, normal direction, and transverse direction) were investigated and compared from the view of the mechano-electrochemical effect at the crack tip. The results show that the crack growth of the HSLA steel is controlled by the corrosion fracture at the crack tip. The variation of crystallographic orientation in E690 steel plate has no influence on the crack tip electrochemical reaction and crack growth mechanism, but changes the crack growth rate. When the stress loading direction is parallel to the rolling direction and the fracture layer is parallel to the transverse-normal plane, the crack growth rate is the slowest with a value of 0.0185 mm·h–1. When the load direction and the fracture layer are parallel to the normal direction and the rolling-transverse plane, respectively, the crack growth rate is the highest with a value of 0.0309 mm·h–1. This phenomenon is ascribed to the different microstructural and mechanical properties in the rolling direction, normal direction, and transverse direction of E690 steel plate.
    • loading
    • [1]
      X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials science: Share corrosion data, Nature, 527(2015), No. 7579, p. 441. doi: 10.1038/527441a
      [2]
      J.W. Zhao, Z.Y. Jiang, and C.S. Lee, Effects of tungsten on the hydrogen embrittlement behaviour of microalloyed steels, Corros. Sci., 82(2014), p. 380. doi: 10.1016/j.corsci.2014.01.042
      [3]
      T.L. Zhao, Z.Y. Liu, X.X. Xu, Y. Li, C.W. Du, and X.B. Liu, Interaction between hydrogen and cyclic stress and its role in fatigue damage mechanism, Corros. Sci., 157(2019), p. 146. doi: 10.1016/j.corsci.2019.05.028
      [4]
      E.D. Fan, S.Q. Zhang, D.H. Xie, Q.Y. Zhao, X.G. Li, and Y.H. Huang, Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 249. doi: 10.1007/s12613-020-2167-0
      [5]
      T. Shoji, Z.P. Lu, and H. Murakami, Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics, Corros. Sci., 52(2010), No. 3, p. 769. doi: 10.1016/j.corsci.2009.10.041
      [6]
      S.M. Ohr, An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture, Mater. Sci. Eng., 72(1985), No. 1, p. 1. doi: 10.1016/0025-5416(85)90064-3
      [7]
      Y. Li, Z.Y. Liu, E.D. Fan, Z.Y. Cui, and J.B. Zhao, The effect of crack tip environment on crack growth behaviour of a low alloy steel at cathodic potentials in artificial seawater, J. Mater. Sci. Technol., 54(2020), p. 119. doi: 10.1016/j.jmst.2020.04.034
      [8]
      Y. Li, Z.Y. Liu, W. Wu, X.G. Li, and J.B. Zhao, Crack growth behaviour of E690 steel in artificial seawater with various pH values, Corros. Sci., 164(2020), art. No. 108336. doi: 10.1016/j.corsci.2019.108336
      [9]
      X. Chen, X.G. Li, C.W. du, and Y.F. Cheng, Effect of cathodic protection on corrosion of pipeline steel under disbonded coating, Corros. Sci., 51(2009), No. 9, p. 2242. doi: 10.1016/j.corsci.2009.05.027
      [10]
      A. Turnbull and L. Wright, Modelling the electrochemical crack size effect on stress corrosion crack growth rate, Corros. Sci., 126(2017), p. 69. doi: 10.1016/j.corsci.2017.06.016
      [11]
      A. Turnbull, M.S.D.S. Maria, and N.D. Thomas, Steady-state electrochemical kinetics of structural steel in simulated fatigue crack-tip environments, Corros. Sci., 28(1988), No. 10, p. 1029. doi: 10.1016/0010-938X(88)90019-4
      [12]
      R.C. Newman, Stress-corrosion cracking mechanisms, [in] P. Marcus, ed., Corrosion Mechanisms in Theory and Practice, CRC Press, 2011, p. 511.
      [13]
      K.R. Cooper and R.G. Kelly, Crack tip chemistry and electrochemistry of environmental cracks in AA 7050, Corros. Sci., 49(2007), No. 6, p. 2636. doi: 10.1016/j.corsci.2006.12.001
      [14]
      H.B. Xue and Y.F. Cheng, Photo-electrochemical studies of the local dissolution of a hydrogen-charged X80 steel at crack-tip in a near-neutral pH solution, Electrochim. Acta, 55(2010), No. 20, p. 5670. doi: 10.1016/j.electacta.2010.05.002
      [15]
      M.M. Hall Jr, Interacting sensitivities of alloy 600 PWSCC to stress intensity factor, yield stress, temperature, carbon concentration, and crack growth orientation alloy 600, Corros. Sci., 125(2017), p. 152. doi: 10.1016/j.corsci.2017.06.014
      [16]
      M.M. Hall Jr, An alternative to the Shoji crack tip strain rate equation, Corros. Sci., 50(2008), No. 10, p. 2902. doi: 10.1016/j.corsci.2008.07.011
      [17]
      A. Turnbull, D.H. Ferriss, and H. Anzai, Modelling of the hydrogen distribution at a crack tip, Mater. Sci. Eng. A, 206(1996), No. 1, p. 1. doi: 10.1016/0921-5093(95)09897-6
      [18]
      H. Krawiec, V. Vignal, E. Schwarzenboeck, and J. Banas, Role of plastic deformation and microstructure in the micro-electrochemical behaviour of Ti–6Al–4V in sodium chloride solution, Electrochim. Acta, 104(2013), p. 400. doi: 10.1016/j.electacta.2012.12.029
      [19]
      J. Venezuela, Q.J. Zhou, Q.L. Liu, M.X. Zhang, and A. Atrens, Influence of hydrogen on the mechanical and fracture properties of some martensitic advanced high strength steels in simulated service conditions, Corros. Sci., 111(2016), p. 602. doi: 10.1016/j.corsci.2016.05.040
      [20]
      Z.Y. Liu, C.W. Du, X. Zhang, F.M. Wang, and X.G. Li, Effect of pH value on stress corrosion cracking of X70 pipeline steel in acidic soil environment, Acta Metall. Sinca Engl. Lett., 26(2013), No. 4, p. 489. doi: 10.1007/s40195-012-0216-z
      [21]
      Y.B. Hu, C.F. Dong, M. Sun, K. Xiao, P. Zhong, and X.G. Li, Effects of solution pH and Cl on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments, Corros. Sci., 53(2011), No. 12, p. 4159. doi: 10.1016/j.corsci.2011.08.024
      [22]
      Z.Y. Liu, X.G. Li, and Y.F. Cheng, Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization, Corros. Sci., 55(2012), p. 54. doi: 10.1016/j.corsci.2011.10.002
      [23]
      Z.Y. Liu, X.G. Li, C.W. du, L. Lu, Y.R. Zhang, and Y.F. Cheng, Effect of inclusions on initiation of stress corrosion cracks in X70 pipeline steel in an acidic soil environment, Corros. Sci., 51(2009), No. 4, p. 895. doi: 10.1016/j.corsci.2009.01.007
      [24]
      Y. Li, Z.Y. Liu, E.D. Fan, Y.H. Huang, Y. Fan, and B.J. Zhao, Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater, J. Mater. Sci. Technol., 64(2021), p. 141. doi: 10.1016/j.jmst.2019.08.029
      [25]
      S. Tanhaei, K. Gheisari, and S.R.A. Zaree, Effect of cold rolling on the microstructural, magnetic, mechanical, and corrosion properties of AISI 316L austenitic stainless steel, Int. J. Miner. Metall. Mater., 25(2018), No. 6, p. 630. doi: 10.1007/s12613-018-1610-y
      [26]
      H.C. Ma, J.B. Zhao, Y. Fan, Y.H. Huang, Z.Y. Liu, C.W. Du, and X.G. Li, Comparative study on corrosion fatigue behaviour of high strength low alloy steel and simulated HAZ microstructures in a simulated marine atmosphere, Int. J. Fatigue, 137(2020), art. No. 105666. doi: 10.1016/j.ijfatigue.2020.105666
      [27]
      P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112. doi: 10.1007/s12613-021-2308-0
      [28]
      H.Y. Tian, X. Wang, Z.Y. Cui, Q.K. Lu, L.W. Wang, L. Lei, Y. Li, and D.W. Zhang, Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater, Corros. Sci., 144(2018), p. 145. doi: 10.1016/j.corsci.2018.08.048
      [29]
      W. Wu, Z.Y. Liu, X.G. Li, C.W. Du, and Z.Y. Cui, Influence of different heat-affected zone microstructures on the stress corrosion behavior and mechanism of high-strength low-alloy steel in a sulfurated marine atmosphere, Mater. Sci. Eng. A, 759(2019), p. 124. doi: 10.1016/j.msea.2019.05.024
      [30]
      American Society for Testing and Materials, ASTM E647: Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International, West Conshohocken, 2010.
      [31]
      M.M. Hall Jr, Crack tip strain rate equation with applications to crack tip embrittlement and active path dissolution models of stress corrosion cracking, Environment-Induced Cracking Mater., [in] S.A. Shipilov, R.H. Jones, J.M. Olive, and R.B. Rebak eds., Environment-Induced Cracking Mater., Vol. 1, Elsevier, 2008, p. 59.
      [32]
      S.Q. Zhang, J.F. Wan, Q.Y. Zhao, J. Liu, F. Huang, Y.H. Huang, and X.G. Li, Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel, Corros. Sci., 164(2020), art. No. 108345. doi: 10.1016/j.corsci.2019.108345
      [33]
      K.R. Cooper and R.G. Kelly, Using capillary electrophoresis to study the chemical conditions within cracks in aluminum alloys, J. Chromatogr. A, 850(1999), No. 1-2, p. 381. doi: 10.1016/S0021-9673(99)00317-9
      [34]
      F.P. Ford, Quantitative prediction of environmentally assisted cracking, Corrosion, 52(1996), No. 5, p. 375. doi: 10.5006/1.3292125
      [35]
      B.G. Ateya and H.W. Pickering, The distribution of anodic and cathodic reaction sites during environmentally assisted cracking, Corros. Sci., 37(1995), No. 9, p. 1443. doi: 10.1016/0010-938X(95)91141-Y
      [36]
      A. Turnbull, Modelling of crack chemistry in sensitized stainless steel in boiling water reactor environments, Corros. Sci., 39(1997), No. 4, p. 789. doi: 10.1016/S0010-938X(97)89342-0
      [37]
      T. Shoji, Z.P. Lu, H. Xue, K. Yoshimoto, M. Itow, J. Kuniya, and K. Watanabe, Quantification of the effects of crack tip plasticity on environmentally-assisted crack growth rates in LWR environments, [in] S.A. Shipilov, R.H. Jones, J.M. Olive, and R.B. Rebak eds., Environment-Induced Cracking Mater., Vol. 1, Elsevier, 2008, p. 107.
      [38]
      L.J. Qiao, J.L. Luo, and X. Mao, Hydrogen evolution and enrichment around stress corrosion crack tips of pipeline steels in dilute bicarbonate solution, Corrosion, 54(1998), No. 2, p. 115. doi: 10.5006/1.3284834
      [39]
      R.N. Parkins, Predictive approaches to stress corrosion cracking failure, Corros. Sci., 20(1980), No. 2, p. 147. doi: 10.1016/0010-938X(80)90128-6
      [40]
      R.N. Parkins, 1990 plenary lecture: Strain rate effects in stress corrosion cracking, Corrosion, 46(1990), No. 3, p. 178. doi: 10.5006/1.3585089
      [41]
      Z.Y. Liu, L. Lu, Y.Z. Huang, C.W. Du, and X.G. Li, Mechanistic aspect of non-steady electrochemical characteristic during stress corrosion cracking of an X70 pipeline steel in simulated underground water, Corrosion, 70(2014), No. 7, p. 678. doi: 10.5006/1153
      [42]
      Z.Y. Liu, X.Z. Wang, C.W. du, J.K. Li, and X.G. Li, Effect of hydrogen-induced plasticity on the stress corrosion cracking of X70 pipeline steel in simulated soil environments, Mater. Sci. Eng. A, 658(2016), p. 348. doi: 10.1016/j.msea.2016.02.019
      [43]
      A.R. Troiano, The role of hydrogen and other interstitials in the mechanical behavior of metals, Metall. Microstruct. Anal., 5(2016), No. 6, p. 557. doi: 10.1007/s13632-016-0319-4
      [44]
      R.A. Oriani, A mechanistic theory of hydrogen embrittlement of steels, Ber. Bunsen Ges. Phys. Chem., 76(1972), No. 8, p. 848.
      [45]
      H.Y. Tian, J.C. Xin, Y. Li, X. Wang, and Z.Y. Cui, Combined effect of cathodic potential and sulfur species on calcareous deposition, hydrogen permeation, and hydrogen embrittlement of a low carbon bainite steel in artificial seawater, Corros. Sci., 158(2019), art. No. 108089. doi: 10.1016/j.corsci.2019.07.013
      [46]
      C.A. Zapffe and C.E. Sims, Hydrogen embrittlement, internal stress and defects in steel, Trans. AIME, 145(1941), p. 225.
      [47]
      W.Y. Choo and J.Y. Lee, Thermal analysis of trapped hydrogen in pure iron, Metall. Trans. A, 13(1982), No. 1, p. 135. doi: 10.1007/BF02642424
      [48]
      Z.Y. Cui, Z.Y. Liu, L.W. Wang, X.G. Li, C.W. Du, and X. Wang, Effect of plastic deformation on the electrochemical and stress corrosion cracking behavior of X70 steel in near-neutral pH environment, Mater. Sci. Eng. A, 677(2016), p. 259. doi: 10.1016/j.msea.2016.09.033
      [49]
      H.C. Ma, L.H. Chen, J.B. Zhao, Y.H. Huang, and X.G. Li, Effect of prior austenite grain boundaries on corrosion fatigue behaviors of E690 high strength low alloy steel in simulated marine atmosphere, Mater. Sci. Eng. A, 773(2020), art. No. 138884. doi: 10.1016/j.msea.2019.138884
      [50]
      M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, and D. Raabe, Hydrogen-assisted decohesion and localized plasticity in dual-phase steel, Acta Mater., 70(2014), p. 174. doi: 10.1016/j.actamat.2014.01.048
      [51]
      A. Nagao, M. Dadfarnia, B.P. Somerday, P. Sofronis, and R.O. Ritchie, Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and “quasi-cleavage” fracture of lath martensitic steels, J. Mech. Phys. Solids, 112(2018), p. 403. doi: 10.1016/j.jmps.2017.12.016

    Catalog


    • /

      返回文章
      返回