留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 1
Jan.  2023

图(4)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  591
  • HTML全文浏览量:  194
  • PDF下载量:  54
  • 被引次数: 0
Ya Chen, Kailun Zhang, Na Li, Wei Guan, Zhiyuan Li, Haosen Chen, Shuqiang Jiao,  and Weili Song, Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 33-43. https://doi.org/10.1007/s12613-022-2416-5
Cite this article as:
Ya Chen, Kailun Zhang, Na Li, Wei Guan, Zhiyuan Li, Haosen Chen, Shuqiang Jiao,  and Weili Song, Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 33-43. https://doi.org/10.1007/s12613-022-2416-5
引用本文 PDF XML SpringerLink
研究论文

电化学诱导的石墨层间化合物输运性质解耦行为:从储能到强化电磁应用

    * 共同第一作者
  • 通讯作者:

    陈浩森    E-mail: chenhs@bit.edu.cn

    宋维力    E-mail: weilis@bit.edu.cn

文章亮点

  • (1) 建立了微观阶结构与宏观电化学性质及充放电平台之间的关系
  • (2) 建立了电导率随充放电状态变化的定量模型
  • (3) 新型石墨层间化合物具有更好的电磁屏蔽性能
  • 热解石墨含有高定向石墨烯层,表现出各向异性电输运和热输运行为,因而在电子器件、电催化和储能领域具有广泛应用。针对铝配离子AlCl— 4嵌入/脱出热解石墨对其输运性质的影响机制问题,本文开展了脱嵌过程中不同阶结构热解石墨的电子结构、晶体结构以及输运行为演化的研究。建立了微观阶结构与宏观电化学性质及充放电平台之间的关系,揭示了铝配离子嵌入后在石墨价带中引入空穴,增加载流子浓度从而提升电子电导率的新机制;明确了AlCl— 4铝配离子直径可以加权平均系数的方式改变电导率,建立了电导率随充放电状态变化的定量模型;随着铝配离子嵌入,电子电导率可提升至原始高定向石墨的3.8倍(40858 S·cm−1),比原始石墨表现出更好的电磁屏蔽性能。
  • Research Article

    Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications

    + Author Affiliations
    • Pyrolytic graphite (PG) with highly aligned graphene layers, present anisotropic electrical and thermal transport behavior, which is attractive in electronic, electrocatalyst and energy storage. Such pristine PG could meeting the limit of electrical conductivity (~2.5 × 104 S·cm−1), although efforts have been made for achieving high-purity sp2 hybridized carbon. For manipulating the electrical conductivity of PG, a facile and efficient electrochemical strategy is demonstrated to enhance electrical transport ability via reversible intercalation/de-intercalation of ${\rm{ AlCl}}^{-}_4 $ into the graphitic interlayers. With the stage evolution at different voltages, variable electrical and thermal transport behaviors could be achieved via controlling ${\rm{ AlCl}}^{-}_4 $ concentrations in the PG because of substantial variation in the electronic density of states. Such evolution leads to decoupled electrical and thermal transport (opposite variation trend) in the in-plane and out-of-plane directions, and the in-plane electrical conductivity of the pristine PG (1.25 × 104 S·cm−1) could be massively promoted to 4.09 × 104 S·cm−1 (${\rm{ AlCl}}^{-}_4 $ intercalated PG), much better than the pristine bulk graphitic papers used for the electrical transport and electromagnetic shielding. The fundamental mechanism of decoupled transport feature and electrochemical strategy here could be extended into other anisotropic conductive bulks for achieving unusual behaviors.
    • loading
    • Supplementary InformationIJM-10-2021-1001.docx
    • [1]
      J.G. Tu, J.X. Wang, S.J. Li, W.L. Song, M.Y. Wang, H.M. Zhu, and S.Q. Jiao, High-efficiency transformation of amorphous carbon into graphite nanoflakes for stable aluminum-ion battery cathodes, Nanoscale, 11(2019), No. 26, p. 12537. doi: 10.1039/C9NR03112J
      [2]
      J.J. Peng, N.Q. Chen, R. He, Z.Y. Wang, S. Dai, and X.B. Jin, Electrochemically driven transformation of amorphous carbons to crystalline graphite nanoflakes: A facile and mild graphitization method, Angew. Chem. Int. Ed., 56(2017), No. 7, p. 1751. doi: 10.1002/anie.201609565
      [3]
      W.L. Song, L.M. Veca, A. Anderson, M.S. Cao, L. Cao, and Y.P. Sun, Light-weight nanocomposite materials with enhanced thermal transport properties, Nanotechnol. Rev., 1(2012), No. 4, p. 363. doi: 10.1515/ntrev-2012-0023
      [4]
      M.S. Dresselhaus and G. Dresselhaus, Intercalation compounds of graphite, Adv. Phys., 30(1981), No. 2, p. 139. doi: 10.1080/00018738100101367
      [5]
      J.O. Besenhard and H.P. Fritz, The electrochemistry of black carbons, Angew. Chem. Int. Ed., 22(1983), No. 12, p. 950. doi: 10.1002/anie.198309501
      [6]
      T. Placke, G. Schmuelling, R. Kloepsch, P. Meister, O. Fromm, P. Hilbig, H.W. Meyer, and M. Winter, In situ X-ray diffraction studies of cation and anion intercalation into graphitic carbons for electrochemical energy storage applications, Z. Anorg. Allg. Chem., 640(2014), No. 10, p. 1996. doi: 10.1002/zaac.201400181
      [7]
      R. Matsumoto and Y. Okabe, Electrical conductivity and air stability of FeCl3, CuCl2, MoCl5, and SbCl5 graphite intercalation compounds prepared from flexible graphite sheets, Synth. Met., 212(2016), p. 62. doi: 10.1016/j.synthmet.2015.11.033
      [8]
      H. Zabel, and S.A. Solin, Graphite Intercalation Compounds Ⅱ: Transport and Electronic Properties, Springer, Berlin, 1992.
      [9]
      L.M. Veca, M.J. Meziani, W. Wang, X. Wang, F.S. Lu, P.Y. Zhang, Y. Lin, R. Fee, J.W. Connell, and Y.P. Sun, Carbon nanosheets for polymeric nanocomposites with high thermal conductivity, Adv. Mater., 21(2009), No. 20, p. 2088. doi: 10.1002/adma.200802317
      [10]
      W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140(1965), No. 4A, p. A1133. doi: 10.1103/PhysRev.140.A1133
      [11]
      R. Nityananda, P. Hohenberg, and W. Kohn, Inhomogeneous electron gas, Resonance, 22(2017), No. 8, p. 809. doi: 10.1007/s12045-017-0529-3
      [12]
      J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
      [13]
      P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50(1994), No. 24, p. 17953. doi: 10.1103/PhysRevB.50.17953
      [14]
      S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132(2010), No. 15, art. No. 154104. doi: 10.1063/1.3382344
      [15]
      S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem., 32(2011), No. 7, p. 1456. doi: 10.1002/jcc.21759
      [16]
      H. Zabel, and S. Solin, Graphite Intercalation Compounds I: Structure and Dynamics. Springer, Berlin, 1990.
      [17]
      J.H. Xu, D.E. Turney, A.L. Jadhav, and R.J. Messinger, Effects of graphite structure and ion transport on the electrochemical properties of rechargeable aluminum–graphite batteries, ACS Appl. Energy Mater., 2(2019), No. 11, p. 7799. doi: 10.1021/acsaem.9b01184
      [18]
      S. Venkatachalam, M. Depriester, A.H. Sahraoui, B. Capoen, M.R. Ammar, and D. Hourlier, Thermal conductivity of kapton-derived carbon, Carbon, 114(2017), p. 134. doi: 10.1016/j.carbon.2016.11.072
      [19]
      M.C. Lin, M. Gong, B.G. Lu, Y.P. Wu, D.Y. Wang, M.Y. Guan, M. Angell, C.X. Chen, J. Yang, B.J. Hwang, and H.J. Dai, An ultrafast rechargeable aluminium-ion battery, Nature, 520(2015), No. 7547, p. 324. doi: 10.1038/nature14340
      [20]
      S.C. Jung, Y. Kang, D. Yoo, J.W. Choi, and Y. Han, Flexible few-layered graphene for the ultrafast rechargeable aluminum-ion battery, J. Phys. Chem. C, 120(2016), No. 13, p. 13384.
      [21]
      R.D. Mckerracher, A. Holland, A. Cruden, and R.G.A. Wills, Comparison of carbon materials as cathodes for the aluminium-ion battery, Carbon, 144(2019), p. 333. doi: 10.1016/j.carbon.2018.12.021
      [22]
      G.A. Elia, G. Greco, P.H. Kamm, F. García-Moreno, S. Raoux, and R. Hahn, Simultaneous X-ray diffraction and tomography operando investigation of aluminum/graphite batteries, Adv. Funct. Mater., 30(2020), No. 43, art. No. 2003913. doi: 10.1002/adfm.202003913
      [23]
      T. Fujita, H. Chen, K.T. Wang, C.L. He, Y.B. Wang, G. Dodbiba, and Y.Z. Wei, Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 179. doi: 10.1007/s12613-020-2127-8
      [24]
      P. Bhauriyal, A. Mahata, and B. Pathak, The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminium-ion battery, Phys. Chem. Chem. Phys., 19(2017), No. 11, p. 7980. doi: 10.1039/C7CP00453B
      [25]
      Y. Sui, C. Liu, R. Masse, and Z. Neale, Dual-ion batteries: the emerging alternative rechargeable batteries, Energy Storage Mater. 25(2020), p. 1.
      [26]
      G.A. Elia, I. Hasa, G. Greco, T. Diemant, K. Marquardt, K. Hoeppner, R.J. Behm, A. Hoell, S. Passerini, and R. Hahn, Insights into the reversibility of aluminum graphite batteries, J. Mater. Chem. A, 5(2017), No. 20, p. 9682. doi: 10.1039/C7TA01018D
      [27]
      B.Y. Ju, W.S. Yang, Q. Zhang, M. Hussain, Z.Y. Xiu, J. Qiao, and G.H. Wu, Research progress on the characterization and repair of graphene defects, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1179. doi: 10.1007/s12613-020-2031-2
      [28]
      S. Takahashi, N. Koura, S. Kohara, M.L. Saboungi, and L.A. Curtiss, Technological and scientific issues of room-temperature molten salts, Plasmas Ions, 2(1999), No. 3-4, p. 91. doi: 10.1016/S1288-3255(99)00105-7
      [29]
      H.B. Yang, L. Wu, B. Jiang, B. Lei, M. Yuan, H.M. Xie, A. Atrens, J.F. Song, G.S. Huang, and F.S. Pan, Discharge properties of Mg–Sn–Y alloys as anodes for Mg-air batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1705. doi: 10.1007/s12613-021-2258-6
      [30]
      H. Kim, J. Hong, G. Yoon, H. Kim, K.Y. Park, M.S. Park, W.S. Yoon, and K. Kang, Sodium intercalation chemistry in graphite, Energy Environ. Sci., 8(2015), No. 10, p. 2963. doi: 10.1039/C5EE02051D
      [31]
      A.L. Patterson, The scherrer formula for X-ray particle size determination, Phys. Rev., 56(1939), No. 10, p. 978. doi: 10.1103/PhysRev.56.978
      [32]
      T. Placke, O. Fromm, S.F. Lux, P. Bieker, S. Rothermel, H.W. Meyer, S. Passerini, and M. Winter, Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells, J. Electrochem. Soc., 159(2012), No. 11, p. A1755. doi: 10.1149/2.011211jes
      [33]
      M. Angell, C.J. Pan, Y.M. Rong, C.Z. Yuan, M.C. Lin, B.J. Hwang, and H.J. Dai, High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte, PNAS, 114(2017), No. 5, p. 834. doi: 10.1073/pnas.1619795114
      [34]
      X.L. Zhou, Q.R. Liu, C.L. Jiang, B.F. Ji, X.L. Ji, Y.B. Tang, and H.M. Cheng, Strategies towards low-cost dual-ion batteries with high performance, Angew. Chem. Int. Ed., 59(2020), No. 10, p. 3802. doi: 10.1002/anie.201814294
      [35]
      Q. Jiang, W.Q. Zhang, J.C. Zhao, P.H. Rao, and J.F. Mao, Superior sodium and lithium storage in strongly coupled amorphous Sb2S3 spheres and carbon nanotubes, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1194. doi: 10.1007/s12613-021-2259-5
      [36]
      Q.W. Wei, S.F. Pei, X.T. Qian, H.P. Liu, Z.B. Liu, W.M. Zhang, T.Y. Zhou, Z.C. Zhang, X.F. Zhang, H.M. Cheng, and W.C. Ren, Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film, Adv. Mater., 32(2020), No. 14, art. No. 1907411. doi: 10.1002/adma.201907411
      [37]
      M.L. Yang, Q. Wei, J.J. Li, Y. Wang, H.F. Guo, L.Y. Gao, L. Huang, X.D. He, Y.B. Li, and Y. Yuan, Flexible composite carbon films prepared by a pancake-making method for electromagnetic interference shielding, Adv. Mater. Interfaces, 7(2020), No. 7, art. No. 1901815. doi: 10.1002/admi.201901815
      [38]
      Y.H. Liu, K.Y. Zhang, Y.L. Mo, L. Zhu, B.W. Yu, F. Chen, and Q. Fu, Hydrated aramid nanofiber network enhanced flexible expanded graphite films towards high EMI shielding and thermal properties, Compos. Sci. Technol., 168(2018), p. 28. doi: 10.1016/j.compscitech.2018.09.005
      [39]
      E.Z. Zhou, J.B. Xi, Y.J. Liu, Z. Xu, Y. Guo, L. Peng, W.W. Gao, J. Ying, Z.C. Chen, and C. Gao, Large-area potassium-doped highly conductive graphene films for electromagnetic interference shielding, Nanoscale, 9(2017), No. 47, p. 18613. doi: 10.1039/C7NR07030F
      [40]
      D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, and Z.M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding, Adv. Funct. Mater., 25(2015), No. 4, p. 559. doi: 10.1002/adfm.201403809
      [41]
      W.L. Song, X.T. Guan, L.Z. Fan, W.Q. Cao, C.Y. Wang, Q.L. Zhao, and M.S. Cao, Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding, J. Mater. Chem. A, 3(2015), No. 5, p. 2097. doi: 10.1039/C4TA05939E
      [42]
      B. Shen, W.T. Zhai, and W.G. Zheng, Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding, Adv. Funct. Mater., 24(2014), No. 28, p. 4542. doi: 10.1002/adfm.201400079
      [43]
      W.L. Song, M.S. Cao, L.Z. Fan, M.M. Lu, Y. Li, C.Y. Wang, and H.F. Ju, Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding, Carbon, 77(2014), p. 130. doi: 10.1016/j.carbon.2014.05.014
      [44]
      W.L. Song, M.S. Cao, M.M. Lu, S. Bi, C.Y. Wang, J. Liu, J. Yuan, and L.Z. Fan, Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding, Carbon, 66(2014), p. 67. doi: 10.1016/j.carbon.2013.08.043
      [45]
      W.L. Song, C.C. Gong, H.M. Li, X.D. Cheng, M.J. Chen, X.J. Yuan, H.S. Chen, Y.Z. Yang, and D.N. Fang, Graphene-based sandwich structures for frequency selectable electromagnetic shielding, ACS Appl. Mater. Interfaces, 9(2017), No. 41, p. 36119. doi: 10.1021/acsami.7b08229
      [46]
      M.H. Al-Saleh and U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites, Carbon, 47(2009), No. 7, p. 1738. doi: 10.1016/j.carbon.2009.02.030

    Catalog


    • /

      返回文章
      返回