Cite this article as: |
Xiangyang Peng, Yuhai Tang, Xiangbin Ding, Zhichao Lu, Shuo Hou, Jianming Zhou, Shuyin Han, Zhaoping Lü, Guangyao Lu, and Yuan Wu, Fe-based amorphous coating prepared using high-velocity oxygen fuel and its corrosion behavior in static lead–bismuth eutectic alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2032-2040. https://doi.org/10.1007/s12613-022-2420-9 |
路广遥 E-mail: Luguangyao@cgnpc.com.cn
吴渊 E-mail: wuyuan@ustb.edu.cn
[1] |
K.L. Murty and I. Charit, Structural materials for Gen-IV nuclear reactors: Challenges and opportunities, J. Nucl. Mater., 383(2008), No. 1-2, p. 189. doi: 10.1016/j.jnucmat.2008.08.044
|
[2] |
H. Wang, J. Xiao, H. Wang, et al., Corrosion behavior and surface treatment of cladding materials used in high-temperature lead–bismuth eutectic alloy: A review, Coatings, 11(2021), No. 3, p. 364. doi: 10.3390/coatings11030364
|
[3] |
J.S. Zhang and N. Li, Review of the studies on fundamental issues in LBE corrosion, J. Nucl. Mater., 373(2008), No. 1-3, p. 351. doi: 10.1016/j.jnucmat.2007.06.019
|
[4] |
J.S. Zhang, A review of steel corrosion by liquid lead and lead-bismuth, Corros. Sci., 51(2009), No. 6, p. 1207. doi: 10.1016/j.corsci.2009.03.013
|
[5] |
J.S. Zhang and N. Li, Analysis on liquid metal corrosion–oxidation interactions, Corros. Sci., 49(2007), No. 11, p. 4154. doi: 10.1016/j.corsci.2007.05.012
|
[6] |
V. Tsisar, S. Gavrilov, C. Schroer, and E. Stergar, Long-term corrosion performance of T91 ferritic/martensitic steel at 400°C in flowing Pb–Bi eutectic with 2 × 10−7 mass% dissolved oxygen, Corros. Sci., 174(2020), p. 108852. doi: 10.1016/j.corsci.2020.108852
|
[7] |
I. Proriol Serre, I. Diop, N. David, M. Vilasi, and J.B. Vogt, Mechanical behavior of coated T91 steel in contact with lead-bismuth liquid alloy at 300°C, Surf. Coat. Technol., 205(2011), No. 19, p. 4521. doi: 10.1016/j.surfcoat.2011.03.089
|
[8] |
G. Müller, A. Heinzel, J. Konys, et al., Results of steel corrosion tests in flowing liquid Pb/Bi at 420–600°C after 2000 h, J. Nucl. Mater., 301(2002), No. 1, p. 40. doi: 10.1016/S0022-3115(01)00725-5
|
[9] |
A. Weisenburger, C. Schroer, A. Jianu, et al., Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models, J. Nucl. Mater., 415(2011), No. 3, p. 260. doi: 10.1016/j.jnucmat.2011.04.028
|
[10] |
G. Benamati, A. Gessi, and P.Z. Zhang, Corrosion experiments in flowing LBE at 450°C, J. Nucl. Mater., 356(2006), No. 1-3, p. 198. doi: 10.1016/j.jnucmat.2006.05.035
|
[11] |
F. Gnecco, E. Ricci, C. Bottino, and A. Passerone, Corrosion behaviour of steels in lead–bismuth at 823 K, J. Nucl. Mater., 335(2004), No. 2, p. 185. doi: 10.1016/j.jnucmat.2004.07.013
|
[12] |
A. Aiello, M. Azzati, G. Benamati, A. Gessi, B. Long, and G. Scaddozzo, Corrosion behaviour of stainless steels in flowing LBE at low and high oxygen concentration, J. Nucl. Mater., 335(2004), No. 2, p. 169. doi: 10.1016/j.jnucmat.2004.07.011
|
[13] |
J.S. Zhang, N. Li, Y. Chen, and A.E. Rusanov, Corrosion behaviors of US steels in flowing lead–bismuth eutectic (LBE), J. Nucl. Mater., 336(2005), No. 1, p. 1. doi: 10.1016/j.jnucmat.2004.08.002
|
[14] |
Y. Kurata, M. Futakawa, and S. Saito, Corrosion behavior of steels in liquid lead–bismuth with low oxygen concentrations, J. Nucl. Mater., 373(2008), No. 1-3, p. 164. doi: 10.1016/j.jnucmat.2007.05.051
|
[15] |
A. Doubková, F. di Gabriele, P. Brabec, and E. Keilová, Corrosion behavior of steels in flowing lead–bismuth under abnormal conditions, J. Nucl. Mater., 376(2008), No. 3, p. 260. doi: 10.1016/j.jnucmat.2008.02.033
|
[16] |
C. Fazio, G. Benamati, C. Martini, and G. Palombarini, Compatibility tests on steels in molten lead and lead–bismuth, J. Nucl. Mater., 296(2001), No. 1-3, p. 243. doi: 10.1016/S0022-3115(01)00538-4
|
[17] |
E.P. Loewen, H.J. Yount, K. Volk, and A. Kumar, Layer formation on metal surfaces in lead–bismuth at high temperatures in presence of zirconium, J. Nucl. Mater., 321(2003), No. 2-3, p. 269. doi: 10.1016/S0022-3115(03)00296-4
|
[18] |
O.F. Kammerer, J.R. Weeks, J. Sadofsky, W.E. Miller, and D.H. Gurinsky, Zirconium and titanium inhibit corrosion and mass transfer of steels by liquid heavy metals, Trans. Met. Soc. AIME, 212(1958), No. 1, art. No. 4306436.
|
[19] |
H. Glasbrenner and F. Gröschel, Exposure of pre-stressed T91 coated with TiN, CrN and DLC to Pb-55.5Bi, J. Nucl. Mater., 356(2006), No. 1-3, p. 213. doi: 10.1016/j.jnucmat.2006.05.038
|
[20] |
J.R. Weeks and C.J. Klamut, Reactions between steel surfaces and zirconium in liquid bismuth, Nucl. Sci. Eng., 8(1960), No. 2, p. 133. doi: 10.13182/NSE60-A25789
|
[21] |
N. Li, Active control of oxygen in molten lead–bismuth eutectic systems to prevent steel corrosion and coolant contamination, J. Nucl. Mater., 300(2002), No. 1, p. 73. doi: 10.1016/S0022-3115(01)00713-9
|
[22] |
L. Martinelli, C. Jean-Louis, and B.C. Fanny, Oxidation of steels in liquid lead bismuth: Oxygen control to achieve efficient corrosion protection, Nucl. Eng. Des., 241(2011), No. 5, p. 1288. doi: 10.1016/j.nucengdes.2010.07.039
|
[23] |
G. Müller, A. Heinzel, G. Schumacher, and A. Weisenburger, Control of oxygen concentration in liquid lead and lead–bismuth, J. Nucl. Mater., 321(2003), No. 2-3, p. 256. doi: 10.1016/S0022-3115(03)00250-2
|
[24] |
J. Lim, G. Manfredi, S. Gavrilov, K. Rosseel, A. Aerts, and J. Van den Bosch, Control of dissolved oxygen in liquid LBE by electrochemical oxygen pumping, Sens. Actuators B, 204(2014), p. 388. doi: 10.1016/j.snb.2014.07.117
|
[25] |
A.K. Rivai and M. Takahashi, Compatibility of surface-coated steels, refractory metals and ceramics to high temperature lead–bismuth eutectic, Prog. Nucl. Energy, 50(2008), No. 2-6, p. 560. doi: 10.1016/j.pnucene.2007.11.081
|
[26] |
E. Yamaki-Irisawa, S. Numata, and M. Takahashi, Corrosion behavior of heat-treated Fe–Al coated steel in lead–bismuth eutectic under loading, Prog. Nucl. Energy, 53(2011), No. 7, p. 1066. doi: 10.1016/j.pnucene.2011.05.014
|
[27] |
Y. Kurata, H. Yokota, and T. Suzuki, Development of aluminum-alloy coating on type 316SS for nuclear systems using liquid lead–bismuth, J. Nucl. Mater., 424(2012), No. 1-3, p. 237. doi: 10.1016/j.jnucmat.2012.03.018
|
[28] |
R. Fetzer, A. Weisenburger, A. Jianu, and G. Müller, Oxide scale formation of modified FeCrAl coatings exposed to liquid lead, Corros. Sci., 55(2012), p. 213. doi: 10.1016/j.corsci.2011.10.019
|
[29] |
F. García Ferré, M. Ormellese, F. Di Fonzo, and M.G. Beghi, Advanced Al2O3 coatings for high temperature operation of steels in heavy liquid metals: A preliminary study, Corros. Sci., 77(2013), p. 375. doi: 10.1016/j.corsci.2013.07.039
|
[30] |
R. Kasada and P. Dou, Sol–gel composite coatings as anti-corrosion barrier for structural materials of lead–bismuth eutectic cooled fast reactor, J. Nucl. Mater., 440(2013), No. 1-3, p. 647. doi: 10.1016/j.jnucmat.2013.06.014
|
[31] |
X.Z. Fan, W.Z. Huang, H.T. Liu, and H.F. Cheng, Bond stability and oxidation resistance of BSAS-based coating on C/SiC composites, Surf. Coat. Technol., 309(2017), p. 35. doi: 10.1016/j.surfcoat.2016.10.080
|
[32] |
H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, and Z.P. Lu, Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications, Prog. Mater. Sci., 103(2019), p. 235. doi: 10.1016/j.pmatsci.2019.01.003
|
[33] |
H.Y. Yuan, H.M. Zhai, W.S. Li, et al., Study of dry sliding wear behavior of a Fe-based amorphous coating synthesized by detonation spraying on an AZ31B magnesium alloy, J. Mater. Eng. Perform., 30(2021), No. 2, p. 905. doi: 10.1007/s11665-020-05357-w
|
[34] |
Z. Lu, X. Chen, X. Liu, et al., Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses, npj Comput. Mater., 6(2020), No. 1, p. 1. doi: 10.1038/s41524-019-0267-z
|
[35] |
Z.C. Lu, X.Y. Peng, Y.H. Tang, et al., Corrosion and irradiation behavior of Fe-based amorphous coating in lead–bismuth eutectic liquids, Sci. China: Technol. Sci., 65(2022), No. 2, p. 440. doi: 10.1007/s11431-021-1938-0
|
[36] |
J.F. Zhang, M. Liu, J.B. Song, C.M. Deng, and C.G. Deng, Microstructure and corrosion behavior of Fe-based amorphous coating prepared by HVOF, J. Alloys Compd., 721(2017), p. 506. doi: 10.1016/j.jallcom.2017.06.046
|
[37] |
S.M. Muthu, M. Arivarasu, T.H. Krishna, et al., Improvement in hot corrosion resistance of dissimilar alloy 825 and AISI 321 CO2-laser weldment by HVOF coating in aggressive salt environment at 900°C, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1536. doi: 10.1007/s12613-020-2014-3
|
[38] |
C. Zhang, L. Liu, K.C. Chan, Q. Chen, and C.Y. Tang, Wear behavior of HVOF-sprayed Fe-based amorphous coatings, Intermetallics, 29(2012), p. 80. doi: 10.1016/j.intermet.2012.05.004
|
[39] |
G. Singh, N. Bala, and V. Chawla, Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni–22Cr–10Al–1Y and Ni–22Cr–10Al–1Y–SiC(N) coatings on ASTM-SA213-T22 steel, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 401. doi: 10.1007/s12613-019-1946-y
|
[40] |
C.F. Yao, H.P. Zhang, H.L. Chang, et al., Structure of surface oxides on martensitic steel under simultaneous ion irradiation and molten LBE corrosion, Corros. Sci., 195(2022), art. No. 109953. doi: 10.1016/j.corsci.2021.109953
|
[41] |
J.D. Hodge, Diffusion of chromium in magnetite as a function of oxygen partial pressure, J. Electrochem. Soc., 125(1978), No. 2, p. 55C. doi: 10.1149/1.2131778
|
[42] |
M.G.C. Cox, B. McEnaney, and V.D. Scott, Phase interactions in the growth of thin oxide films on iron–chromium alloys, Philos. Mag. A:J. Theor. Exp. Appl. Phys., 29(1974), No. 3, p. 585.
|
[43] |
V. Maurice, W.P. Yang, and P. Marcus, X-ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe–18Cr–13Ni single-crystal surfaces, J. Electrochem. Soc., 145(1998), No. 3, p. 909. doi: 10.1149/1.1838366
|
[44] |
G.C. Allen, S.J. Harris, J.A. Jutson, and J.M. Dyke, A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy, Appl. Surf. Sci., 37(1989), No. 1, p. 111. doi: 10.1016/0169-4332(89)90977-X
|
[45] |
S. Rondon and P.M.A. Sherwood, Core level and valence band spectra of PbO2 by XPS, Surf. Sci. Spectra, 5(1998), No. 2, p. 104. doi: 10.1116/1.1247867
|
[46] |
C.D. Wagner, D.A. Zatko, and R.H. Raymond, Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis, Anal. Chem., 52(1980), No. 9, p. 1445. doi: 10.1021/ac50059a017
|
[47] |
J.J. Si, X.H. Chen, Y.H. Cai, Y.D. Wu, T. Wang, and X.H. Hui, Corrosion behavior of Cr-based bulk metallic glasses in hydrochloric acid solutions, Corros. Sci., 107(2016), p. 123. doi: 10.1016/j.corsci.2016.02.026
|
[48] |
S.J. Pang, T. Zhang, K. Asami, and A. Inoue, Formation of bulk glassy Fe75–x–yCrxMoyC15B10 alloys and their corrosion behavior, J. Mater. Res., 17(2002), No. 3, p. 701. doi: 10.1557/JMR.2002.0100
|