留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 11
Nov.  2022

图(11)

数据统计

分享

计量
  • 文章访问数:  931
  • HTML全文浏览量:  445
  • PDF下载量:  101
  • 被引次数: 0
Xiangyang Peng, Yuhai Tang, Xiangbin Ding, Zhichao Lu, Shuo Hou, Jianming Zhou, Shuyin Han, Zhaoping Lü, Guangyao Lu, and Yuan Wu, Fe-based amorphous coating prepared using high-velocity oxygen fuel and its corrosion behavior in static lead–bismuth eutectic alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2032-2040. https://doi.org/10.1007/s12613-022-2420-9
Cite this article as:
Xiangyang Peng, Yuhai Tang, Xiangbin Ding, Zhichao Lu, Shuo Hou, Jianming Zhou, Shuyin Han, Zhaoping Lü, Guangyao Lu, and Yuan Wu, Fe-based amorphous coating prepared using high-velocity oxygen fuel and its corrosion behavior in static lead–bismuth eutectic alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2032-2040. https://doi.org/10.1007/s12613-022-2420-9
引用本文 PDF XML SpringerLink
研究论文

铁基非晶涂层的制备及静态铅铋腐蚀行为研究

    * 共同第一作者
  • 通讯作者:

    路广遥    E-mail: Luguangyao@cgnpc.com.cn

    吴渊    E-mail: wuyuan@ustb.edu.cn

文章亮点

  • (1)采用超音速火焰喷涂技术在T91基体表面制备了性能良好的Fe49.7Cr18Mn1.9Mo7.4W1.6B15.2C3.8Si2.4铁基非晶涂层。
  • (2)对比了铁基非晶涂层和T91钢静态铅铋腐蚀行为的差异。
  • (3)提出了非晶涂层在静态铅铋环境中的腐蚀机制模型。
  • 铅铋共晶合金(LBE)由于具有低熔点、高沸点、热导率高、化学惰性好和中子辐照损伤小等一系列的优异性能,被选为ADS系统散裂靶兼冷却剂的重点材料。然而传统结构材料在高温液态LBE环境中存在严重的腐蚀问题,提升结构材料与LBE的相容性,降低结构材料的腐蚀速率仍然是核工程应用过程中亟需解决的问题。在本研究中,我们采用超音速火焰喷涂技术(HOVF)在T91钢基体表面制备了Fe49.7Cr18Mn1.9Mo7.4W1.6B15.2C3.8Si2非晶涂层,对比研究了T91钢及非晶涂层在400℃、饱和氧条件下的静态铅铋腐蚀行为。结果表明,在经过500 h的铅铋腐蚀后,T91基板腐蚀严重,与LBE接触的界面上生成了6–10 μm厚均匀分布的双氧化层,其中内层主要成分是(Fe,Cr)3O4,外层成分是Fe3O4。相同条件下,非晶涂层展现出良好的热稳定性和耐铅铋腐蚀性能。涂层在铅铋腐蚀后,虽然表面有少量Fe3O4、Cr2O3和PbO生成,但并未观察到明显的LBE渗透现象,涂层的非晶含量和与基体的结合特性也基本保持不变。本研究表明,非晶涂层在铅铋环境下具有优异的抗腐蚀性能,未来作为铅铋环境下结构材料的保护涂层具有良好应用前景。
  • Research Article

    Fe-based amorphous coating prepared using high-velocity oxygen fuel and its corrosion behavior in static lead–bismuth eutectic alloy

    + Author Affiliations
    • The Fe49.7Cr18Mn1.9Mo7.4W1.6B15.2C3.8Si2 amorphous coating was deposited on T91 steel substrate by using the high-velocity oxygen fuel (HVOF) spray technique to enhance the corrosion resistance of T91 stainless steel in liquid lead–bismuth eutectic (LBE). The corrosion behavior of the T91 steel and coating exposed to oxygen-saturated LBE at 400°C for 500 h was investigated. Results showed that the T91 substrate was severely corroded and covered by a homogeneously distributed dual-layer oxide on the interface contacted to LBE, consisting of an outer magnetite layer and an inner Fe–Cr spinel layer. Meanwhile, the amorphous coating with a high glass transition temperature (Tg = 550°C) and crystallization temperature (Tx = 600°C) exhibited dramatically enhanced thermal stability and corrosion resistance. No visible LBE penetration was observed, although small amounts of Fe3O4, Cr2O3, and PbO were found on the coating surface. In addition, the amorphicity and interface bonding of the coating layer remained unchanged after the LBE corrosion. The Fe-based amorphous coating can act as a stable barrier layer in liquid LBE and have great application potential for long-term service in LBE-cooled fast reactors.
    • loading
    • [1]
      K.L. Murty and I. Charit, Structural materials for Gen-IV nuclear reactors: Challenges and opportunities, J. Nucl. Mater., 383(2008), No. 1-2, p. 189. doi: 10.1016/j.jnucmat.2008.08.044
      [2]
      H. Wang, J. Xiao, H. Wang, et al., Corrosion behavior and surface treatment of cladding materials used in high-temperature lead–bismuth eutectic alloy: A review, Coatings, 11(2021), No. 3, p. 364. doi: 10.3390/coatings11030364
      [3]
      J.S. Zhang and N. Li, Review of the studies on fundamental issues in LBE corrosion, J. Nucl. Mater., 373(2008), No. 1-3, p. 351. doi: 10.1016/j.jnucmat.2007.06.019
      [4]
      J.S. Zhang, A review of steel corrosion by liquid lead and lead-bismuth, Corros. Sci., 51(2009), No. 6, p. 1207. doi: 10.1016/j.corsci.2009.03.013
      [5]
      J.S. Zhang and N. Li, Analysis on liquid metal corrosion–oxidation interactions, Corros. Sci., 49(2007), No. 11, p. 4154. doi: 10.1016/j.corsci.2007.05.012
      [6]
      V. Tsisar, S. Gavrilov, C. Schroer, and E. Stergar, Long-term corrosion performance of T91 ferritic/martensitic steel at 400°C in flowing Pb–Bi eutectic with 2  × 10−7 mass% dissolved oxygen, Corros. Sci., 174(2020), p. 108852. doi: 10.1016/j.corsci.2020.108852
      [7]
      I. Proriol Serre, I. Diop, N. David, M. Vilasi, and J.B. Vogt, Mechanical behavior of coated T91 steel in contact with lead-bismuth liquid alloy at 300°C, Surf. Coat. Technol., 205(2011), No. 19, p. 4521. doi: 10.1016/j.surfcoat.2011.03.089
      [8]
      G. Müller, A. Heinzel, J. Konys, et al., Results of steel corrosion tests in flowing liquid Pb/Bi at 420–600°C after 2000 h, J. Nucl. Mater., 301(2002), No. 1, p. 40. doi: 10.1016/S0022-3115(01)00725-5
      [9]
      A. Weisenburger, C. Schroer, A. Jianu, et al., Long term corrosion on T91 and AISI1 316L steel in flowing lead alloy and corrosion protection barrier development: Experiments and models, J. Nucl. Mater., 415(2011), No. 3, p. 260. doi: 10.1016/j.jnucmat.2011.04.028
      [10]
      G. Benamati, A. Gessi, and P.Z. Zhang, Corrosion experiments in flowing LBE at 450°C, J. Nucl. Mater., 356(2006), No. 1-3, p. 198. doi: 10.1016/j.jnucmat.2006.05.035
      [11]
      F. Gnecco, E. Ricci, C. Bottino, and A. Passerone, Corrosion behaviour of steels in lead–bismuth at 823 K, J. Nucl. Mater., 335(2004), No. 2, p. 185. doi: 10.1016/j.jnucmat.2004.07.013
      [12]
      A. Aiello, M. Azzati, G. Benamati, A. Gessi, B. Long, and G. Scaddozzo, Corrosion behaviour of stainless steels in flowing LBE at low and high oxygen concentration, J. Nucl. Mater., 335(2004), No. 2, p. 169. doi: 10.1016/j.jnucmat.2004.07.011
      [13]
      J.S. Zhang, N. Li, Y. Chen, and A.E. Rusanov, Corrosion behaviors of US steels in flowing lead–bismuth eutectic (LBE), J. Nucl. Mater., 336(2005), No. 1, p. 1. doi: 10.1016/j.jnucmat.2004.08.002
      [14]
      Y. Kurata, M. Futakawa, and S. Saito, Corrosion behavior of steels in liquid lead–bismuth with low oxygen concentrations, J. Nucl. Mater., 373(2008), No. 1-3, p. 164. doi: 10.1016/j.jnucmat.2007.05.051
      [15]
      A. Doubková, F. di Gabriele, P. Brabec, and E. Keilová, Corrosion behavior of steels in flowing lead–bismuth under abnormal conditions, J. Nucl. Mater., 376(2008), No. 3, p. 260. doi: 10.1016/j.jnucmat.2008.02.033
      [16]
      C. Fazio, G. Benamati, C. Martini, and G. Palombarini, Compatibility tests on steels in molten lead and lead–bismuth, J. Nucl. Mater., 296(2001), No. 1-3, p. 243. doi: 10.1016/S0022-3115(01)00538-4
      [17]
      E.P. Loewen, H.J. Yount, K. Volk, and A. Kumar, Layer formation on metal surfaces in lead–bismuth at high temperatures in presence of zirconium, J. Nucl. Mater., 321(2003), No. 2-3, p. 269. doi: 10.1016/S0022-3115(03)00296-4
      [18]
      O.F. Kammerer, J.R. Weeks, J. Sadofsky, W.E. Miller, and D.H. Gurinsky, Zirconium and titanium inhibit corrosion and mass transfer of steels by liquid heavy metals, Trans. Met. Soc. AIME, 212(1958), No. 1, art. No. 4306436.
      [19]
      H. Glasbrenner and F. Gröschel, Exposure of pre-stressed T91 coated with TiN, CrN and DLC to Pb-55.5Bi, J. Nucl. Mater., 356(2006), No. 1-3, p. 213. doi: 10.1016/j.jnucmat.2006.05.038
      [20]
      J.R. Weeks and C.J. Klamut, Reactions between steel surfaces and zirconium in liquid bismuth, Nucl. Sci. Eng., 8(1960), No. 2, p. 133. doi: 10.13182/NSE60-A25789
      [21]
      N. Li, Active control of oxygen in molten lead–bismuth eutectic systems to prevent steel corrosion and coolant contamination, J. Nucl. Mater., 300(2002), No. 1, p. 73. doi: 10.1016/S0022-3115(01)00713-9
      [22]
      L. Martinelli, C. Jean-Louis, and B.C. Fanny, Oxidation of steels in liquid lead bismuth: Oxygen control to achieve efficient corrosion protection, Nucl. Eng. Des., 241(2011), No. 5, p. 1288. doi: 10.1016/j.nucengdes.2010.07.039
      [23]
      G. Müller, A. Heinzel, G. Schumacher, and A. Weisenburger, Control of oxygen concentration in liquid lead and lead–bismuth, J. Nucl. Mater., 321(2003), No. 2-3, p. 256. doi: 10.1016/S0022-3115(03)00250-2
      [24]
      J. Lim, G. Manfredi, S. Gavrilov, K. Rosseel, A. Aerts, and J. Van den Bosch, Control of dissolved oxygen in liquid LBE by electrochemical oxygen pumping, Sens. Actuators B, 204(2014), p. 388. doi: 10.1016/j.snb.2014.07.117
      [25]
      A.K. Rivai and M. Takahashi, Compatibility of surface-coated steels, refractory metals and ceramics to high temperature lead–bismuth eutectic, Prog. Nucl. Energy, 50(2008), No. 2-6, p. 560. doi: 10.1016/j.pnucene.2007.11.081
      [26]
      E. Yamaki-Irisawa, S. Numata, and M. Takahashi, Corrosion behavior of heat-treated Fe–Al coated steel in lead–bismuth eutectic under loading, Prog. Nucl. Energy, 53(2011), No. 7, p. 1066. doi: 10.1016/j.pnucene.2011.05.014
      [27]
      Y. Kurata, H. Yokota, and T. Suzuki, Development of aluminum-alloy coating on type 316SS for nuclear systems using liquid lead–bismuth, J. Nucl. Mater., 424(2012), No. 1-3, p. 237. doi: 10.1016/j.jnucmat.2012.03.018
      [28]
      R. Fetzer, A. Weisenburger, A. Jianu, and G. Müller, Oxide scale formation of modified FeCrAl coatings exposed to liquid lead, Corros. Sci., 55(2012), p. 213. doi: 10.1016/j.corsci.2011.10.019
      [29]
      F. García Ferré, M. Ormellese, F. Di Fonzo, and M.G. Beghi, Advanced Al2O3 coatings for high temperature operation of steels in heavy liquid metals: A preliminary study, Corros. Sci., 77(2013), p. 375. doi: 10.1016/j.corsci.2013.07.039
      [30]
      R. Kasada and P. Dou, Sol–gel composite coatings as anti-corrosion barrier for structural materials of lead–bismuth eutectic cooled fast reactor, J. Nucl. Mater., 440(2013), No. 1-3, p. 647. doi: 10.1016/j.jnucmat.2013.06.014
      [31]
      X.Z. Fan, W.Z. Huang, H.T. Liu, and H.F. Cheng, Bond stability and oxidation resistance of BSAS-based coating on C/SiC composites, Surf. Coat. Technol., 309(2017), p. 35. doi: 10.1016/j.surfcoat.2016.10.080
      [32]
      H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, and Z.P. Lu, Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications, Prog. Mater. Sci., 103(2019), p. 235. doi: 10.1016/j.pmatsci.2019.01.003
      [33]
      H.Y. Yuan, H.M. Zhai, W.S. Li, et al., Study of dry sliding wear behavior of a Fe-based amorphous coating synthesized by detonation spraying on an AZ31B magnesium alloy, J. Mater. Eng. Perform., 30(2021), No. 2, p. 905. doi: 10.1007/s11665-020-05357-w
      [34]
      Z. Lu, X. Chen, X. Liu, et al., Interpretable machine-learning strategy for soft-magnetic property and thermal stability in Fe-based metallic glasses, npj Comput. Mater., 6(2020), No. 1, p. 1. doi: 10.1038/s41524-019-0267-z
      [35]
      Z.C. Lu, X.Y. Peng, Y.H. Tang, et al., Corrosion and irradiation behavior of Fe-based amorphous coating in lead–bismuth eutectic liquids, Sci. China: Technol. Sci., 65(2022), No. 2, p. 440. doi: 10.1007/s11431-021-1938-0
      [36]
      J.F. Zhang, M. Liu, J.B. Song, C.M. Deng, and C.G. Deng, Microstructure and corrosion behavior of Fe-based amorphous coating prepared by HVOF, J. Alloys Compd., 721(2017), p. 506. doi: 10.1016/j.jallcom.2017.06.046
      [37]
      S.M. Muthu, M. Arivarasu, T.H. Krishna, et al., Improvement in hot corrosion resistance of dissimilar alloy 825 and AISI 321 CO2-laser weldment by HVOF coating in aggressive salt environment at 900°C, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1536. doi: 10.1007/s12613-020-2014-3
      [38]
      C. Zhang, L. Liu, K.C. Chan, Q. Chen, and C.Y. Tang, Wear behavior of HVOF-sprayed Fe-based amorphous coatings, Intermetallics, 29(2012), p. 80. doi: 10.1016/j.intermet.2012.05.004
      [39]
      G. Singh, N. Bala, and V. Chawla, Microstructural analysis and hot corrosion behavior of HVOF-sprayed Ni–22Cr–10Al–1Y and Ni–22Cr–10Al–1Y–SiC(N) coatings on ASTM-SA213-T22 steel, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 401. doi: 10.1007/s12613-019-1946-y
      [40]
      C.F. Yao, H.P. Zhang, H.L. Chang, et al., Structure of surface oxides on martensitic steel under simultaneous ion irradiation and molten LBE corrosion, Corros. Sci., 195(2022), art. No. 109953. doi: 10.1016/j.corsci.2021.109953
      [41]
      J.D. Hodge, Diffusion of chromium in magnetite as a function of oxygen partial pressure, J. Electrochem. Soc., 125(1978), No. 2, p. 55C. doi: 10.1149/1.2131778
      [42]
      M.G.C. Cox, B. McEnaney, and V.D. Scott, Phase interactions in the growth of thin oxide films on iron–chromium alloys, Philos. Mag. A:J. Theor. Exp. Appl. Phys., 29(1974), No. 3, p. 585.
      [43]
      V. Maurice, W.P. Yang, and P. Marcus, X-ray photoelectron spectroscopy and scanning tunneling microscopy study of passive films formed on (100) Fe–18Cr–13Ni single-crystal surfaces, J. Electrochem. Soc., 145(1998), No. 3, p. 909. doi: 10.1149/1.1838366
      [44]
      G.C. Allen, S.J. Harris, J.A. Jutson, and J.M. Dyke, A study of a number of mixed transition metal oxide spinels using X-ray photoelectron spectroscopy, Appl. Surf. Sci., 37(1989), No. 1, p. 111. doi: 10.1016/0169-4332(89)90977-X
      [45]
      S. Rondon and P.M.A. Sherwood, Core level and valence band spectra of PbO2 by XPS, Surf. Sci. Spectra, 5(1998), No. 2, p. 104. doi: 10.1116/1.1247867
      [46]
      C.D. Wagner, D.A. Zatko, and R.H. Raymond, Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis, Anal. Chem., 52(1980), No. 9, p. 1445. doi: 10.1021/ac50059a017
      [47]
      J.J. Si, X.H. Chen, Y.H. Cai, Y.D. Wu, T. Wang, and X.H. Hui, Corrosion behavior of Cr-based bulk metallic glasses in hydrochloric acid solutions, Corros. Sci., 107(2016), p. 123. doi: 10.1016/j.corsci.2016.02.026
      [48]
      S.J. Pang, T. Zhang, K. Asami, and A. Inoue, Formation of bulk glassy Fe75–xyCrxMoyC15B10 alloys and their corrosion behavior, J. Mater. Res., 17(2002), No. 3, p. 701. doi: 10.1557/JMR.2002.0100

    Catalog


    • /

      返回文章
      返回