Cite this article as: |
Bao Zhang, Jiusan Xiao, Shuqiang Jiao, and Hongmin Zhu, Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 787-795. https://doi.org/10.1007/s12613-022-2421-8 |
肖九三 E-mail: jsxiao@ustb.edu.cn
朱鸿民 E-mail: hzhu@ustb.edu.cn
[1] |
X.L. Shi, J. Zou, and Z.G. Chen, Advanced thermoelectric design: From materials and structures to devices, Chem. Rev., 120(2020), No. 15, p. 7399. doi: 10.1021/acs.chemrev.0c00026
|
[2] |
H.T. Su, F.B. Zhou, B.B. Shi, H.N. Qi, and J.C. Deng, Causes and detection of coalfield fires, control techniques, and heat energy recovery: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 275. doi: 10.1007/s12613-019-1947-x
|
[3] |
S. Roychowdhury, T. Ghosh, R. Arora, M. Samanta, L. Xie, N.K. Singh, A. Soni, J. He, U.V. Waghmare, and K. Biswas, Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2, Science, 371(2021), No. 6530, p. 722. doi: 10.1126/science.abb3517
|
[4] |
Z. Ma, J.T. Wei, P.S. Song, M.L. Zhang, L.L. Yang, J. Ma, W. Liu, F.H. Yang, and X.D. Wang, Review of experimental approaches for improving ZT of thermoelectric materials, Mater. Sci. Semicond. Process., 121(2021), art. No. 105303. doi: 10.1016/j.mssp.2020.105303
|
[5] |
X. Zhang and L.D. Zhao, Thermoelectric materials: Energy conversion between heat and electricity, J. Materiomics, 1(2015), No. 2, p. 92. doi: 10.1016/j.jmat.2015.01.001
|
[6] |
G.J. Tan, L.D. Zhao, and M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev., 116(2016), No. 19, p. 12123. doi: 10.1021/acs.chemrev.6b00255
|
[7] |
R. Prasad and S.D. Bhame, Review on texturization effects in thermoelectric oxides, Mater. Renewable Sustainable Energy, 9(2020), art. No. 3. doi: 10.1007/s40243-019-0163-y
|
[8] |
A. Nag and V. Shubha, Oxide thermoelectric materials: A structure–property relationship, J. Electron. Mater., 43(2014), No. 4, p. 962. doi: 10.1007/s11664-014-3024-6
|
[9] |
Y. Gu, X.L. Shi, L. Pan, W.D. Liu, Q. Sun, X. Tang, L.Z. Kou, Q.F. Liu, Y.F. Wang, and Z.G. Chen, Rational electronic and structural designs advance BiCuSeO thermoelectrics, Adv. Funct. Mater., 31(2021), No. 25, art. No. 2101289. doi: 10.1002/adfm.202101289
|
[10] |
H.Q. Liu, H.A. Ma, T.C. Su, Y.W. Zhang, B. Sun, B.W. Liu, L.J. Kong, B.M. Liu, and X.P. Jia, High-thermoelectric performance of TiO2−x fabricated under high pressure at high temperatures, J. Materiomics, 3(2017), No. 4, p. 286. doi: 10.1016/j.jmat.2017.06.002
|
[11] |
G.Y. Ji, L.J. Chang, H.A. Ma, B.M. Liu, Q. Chen, Y. Wang, X.J. Li, J.N. Wang, Y.W. Zhang, and X.P. Jia, Synthesis and characterization of Al doped non-stoichiometric ratio titanium oxide at high temperature and pressure, J. Alloys Compd., 850(2021), art. No. 156623. doi: 10.1016/j.jallcom.2020.156623
|
[12] |
D.T. Morelli, Thermal conductivity and thermoelectric power of titanium carbide single crystals, Phys. Rev. B Condens. Matter, 44(1991), No. 11, p. 5453. doi: 10.1103/PhysRevB.44.5453
|
[13] |
L.W. Zhao, W.B. Qiu, Y.X. Sun, L.Q. Chen, H. Deng, L. Yang, X.M. Shi, and J. Tang, Enhanced thermoelectric performance of Bi0.3Sb1.7Te3 based alloys by dispersing TiC ceramic nanoparticles, J. Alloys Compd., 863(2021), art. No. 158376. doi: 10.1016/j.jallcom.2020.158376
|
[14] |
L.H. Huang, J.C. Wang, X.B. Mo, X.B. Lei, S.D. Ma, C. Wang, and Q.Y. Zhang, Improving the thermoelectric properties of the half-Heusler compound VCoSb by vanadium vacancy, Materials, 12(2019), No. 10, art. No. 1637. doi: 10.3390/ma12101637
|
[15] |
G. Li, J.Y. Yang, Y. Xiao, L.W. Fu, Y.B. Luo, D. Zhang, M. Liu, W.X. Li, and M.Y. Zhang, Effect of TiC nanoinclusions on thermoelectric and mechanical performance of polycrystalline In4Se2.65, J. Am. Ceram. Soc., 98(2015), No. 12, p. 3813. doi: 10.1111/jace.13773
|
[16] |
Y. Liu, C.L. Ou, J.G. Hou, and H.M. Zhu, Effect of coated TiO2 nano-particle on thermoelectric performance of TiC0.5O0.5 ceramics, J. Alloys Compd., 531(2012), p. 5. doi: 10.1016/j.jallcom.2012.02.176
|
[17] |
C.L. Ou, J.G. Hou, T.R. Wei, B. Jiang, S.Q. Jiao, J.F. Li, and H.M. Zhu, High thermoelectric performance of all-oxide heterostructures with carrier double-barrier filtering effect, NPG Asia Mater., 7(2015), No. 5, art. No. e182. doi: 10.1038/am.2015.36
|
[18] |
K.C. Chang and C.J. Liu, Disorder effect and thermoelectric properties of Bi1−xCaxCu1−ySeO with Cu vacancy, J. Alloys Compd., 896(2022), art. No. 163033. doi: 10.1016/j.jallcom.2021.163033
|
[19] |
W. Saito, K. Hayashi, J.F. Dong, J.F. Li, and Y. Miyazaki, Control of the thermoelectric properties of Mg2Sn single crystals via point-defect engineering, Sci. Rep., 2020(2020), art. No. 10. doi: 10.1038/s41598-020-58998-1
|
[20] |
Y.B. Zhu, Z.J. Han, F. Jiang, E.T. Dong, B.P. Zhang, W.Q. Zhang, and W.S. Liu, Thermodynamic criterions of the thermoelectric performance enhancement in Mg2Sn through the self-compensation vacancy, Mater. Today Phys., 16(2021), art. No. 100327. doi: 10.1016/j.mtphys.2020.100327
|
[21] |
Y. Wang, W.D. Liu, X.L. Shi, M. Hong, L.J. Wang, M. Li, H. Wang, J. Zou, and Z.G. Chen, Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction, Chem. Eng. J., 391(2020), art. No. 123513. doi: 10.1016/j.cej.2019.123513
|
[22] |
B. Jiang, N. Hou, S.Y. Huang, G.G. Zhou, J.G. Hou, Z.M. Cao, and H.M. Zhu, Structural studies of TiC1−xOx solid solution by Rietveld refinement and first-principles calculations, J. Solid State Chem., 204(2013), p. 1. doi: 10.1016/j.jssc.2013.05.009
|
[23] |
B. Zhang, J.S. Xiao, S.Q. Jiao, and H.M. Zhu, A novel titanium oxycarbide phase with metal-vacancy (Ti1−yCxO1−x): Structural and thermodynamic basis, Ceram. Int., 47(2021), No. 11, p. 16324. doi: 10.1016/j.ceramint.2021.02.212
|
[24] |
H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188. doi: 10.1103/PhysRevB.13.5188
|
[25] |
J.P. Perdew and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B, 33(1986), No. 12, p. 8800. doi: 10.1103/PhysRevB.33.8800
|
[26] |
J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
|
[27] |
L. Pan, Y.D. Lang, L. Zhao, D. Berardan, E. Amzallag, C. Xu, Y.F. Gu, C.C. Chen, L.D. Zhao, X.D. Shen, Y.N. Lyu, C.H. Lu, and Y.F. Wang, Realization of n-type and enhanced thermoelectric performance of p-type BiCuSeO by controlled iron incorporation, J. Mater. Chem. A, 6(2018), No. 27, p. 13340. doi: 10.1039/C8TA03521K
|
[28] |
S. Conze, I. Veremchuk, M. Reibold, B. Matthey, A. Michaelis, Y. Grin, and I. Kinski, Magnéli phases Ti4O7 and Ti8O15 and their carbon nanocomposites via the thermal decomposition-precursor route, J. Solid State Chem., 229(2015), p. 235. doi: 10.1016/j.jssc.2015.04.037
|
[29] |
Z. Jiang and W.F. Shangguan, Rational removal of stabilizer-ligands from platinum nanoparticles supported on photocatalysts by self-photocatalysis degradation, Catal. Today, 242(2015), p. 372. doi: 10.1016/j.cattod.2014.07.037
|
[30] |
B.Q. Xu, D. Zhao, H.Y. Sohn, Y. Mohassab, B. Yang, Y.P. Lan, and J. Yang, Flash synthesis of Magnéli phase (TinO2n-1) nanoparticles by thermal plasma treatment of H2TiO3, Ceram. Int., 44(2018), No. 4, p. 3929. doi: 10.1016/j.ceramint.2017.11.184
|
[31] |
Y. Wang, P. Miska, D. Pilloud, D. Horwat, F. Mücklich, and J.F. Pierson, Transmittance enhancement and optical band gap widening of Cu2O thin films after air annealing, J. Appl. Phys., 115(2014), No. 7, art. No. 073505. doi: 10.1063/1.4865957
|
[32] |
T. Koketsu, J.W. Ma, B.J. Morgan, M. Body, C. Legein, W. Dachraoui, M. Giannini, A. Demortière, M. Salanne, F. Dardoize, H. Groult, O.J. Borkiewicz, K.W. Chapman, P. Strasser, and D. Dambournet, Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2, Nat. Mater., 16(2017), No. 11, p. 1142. doi: 10.1038/nmat4976
|
[33] |
H.Q. Liu, H.A. Ma, L.X. Chen, F. Wang, B.M. Liu, J.X. Chen, G.Y. Ji, Y.W. Zhang, and X.P. Jia, Pressure-induced thermoelectric properties of strongly reduced titanium oxides, CrystEngComm, 21(2019), No. 6, p. 1042. doi: 10.1039/C8CE02022A
|
[34] |
J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Resonant levels in bulk thermoelectric semiconductors, Energy Environ. Sci., 5(2012), No. 2, p. 5510. doi: 10.1039/C1EE02612G
|
[35] |
A. Tkach, J. Resende, K.V. Saravanan, M.E. Costa, P. Diaz-Chao, E. Guilmeau, O. Okhay, and P.M. Vilarinho, Abnormal grain growth as a method to enhance the thermoelectric performance of Nb-doped strontium titanate ceramics, ACS Sustainable Chem. Eng., 6(2018), No. 12, p. 15988. doi: 10.1021/acssuschemeng.8b03875
|
[36] |
L. Xu, M.P. Garrett, and B. Hu, Doping effects on internally coupled Seebeck coefficient, electrical, and thermal conductivities in aluminum-doped TiO2, J. Phys. Chem. C, 116(2012), No. 24, p. 13020. doi: 10.1021/jp302652c
|
[37] |
X.Y. Wan, Z.M. Liu, L. Sun, P. Jiang, and X.H. Bao, Synergetic enhancement of thermoelectric performance in a Bi0.5Sb1.5Te3/SrTiO3 heterostructure, J. Mater. Chem. A, 8(2020), No. 21, p. 10839. doi: 10.1039/D0TA04296J
|
[38] |
R.Q. Zhang, Z.Z. Zhou, Q. Yao, N. Qi, and Z.Q. Chen, Significant improvement in thermoelectric performance of SnSe/SnS via nano-heterostructures, Phys. Chem. Chem. Phys., 23(2021), No. 6, p. 3794. doi: 10.1039/D0CP05548D
|
[39] |
C. Jung, B. Dutta, P. Dey, S.J. Jeon, S. Han, H.M. Lee, J.S. Park, S.H. Yi, and P.P. Choi, Tailoring nanostructured NbCoSn-based thermoelectric materials via crystallization of an amorphous precursor, Nano Energy, 80(2021), art. No. 105518. doi: 10.1016/j.nanoen.2020.105518
|
[40] |
G. Korotcenkov, V. Brinzari, and M.H. Ham, In2O3-based thermoelectric materials: The state of the art and the role of surface state in the improvement of the efficiency of thermoelectric conversion, Crystals, 8(2018), No. 1, art. No. 14. doi: 10.3390/cryst8010014
|
[41] |
K.H. Lim, K.W. Wong, Y. Liu, Y. Zhang, D. Cadavid, A. Cabot, and K.M. Ng, Critical role of nanoinclusions in silver selenide nanocomposites as a promising room temperature thermoelectric material, J. Mater. Chem. C, 7(2019), No. 9, p. 2646. doi: 10.1039/C9TC00163H
|
[42] |
S. Yang, H.Z. Gu, Z.H. Li, and A. Huang, Enhanced thermoelectric performance in aluminum-doped zinc oxide by porous architecture and nanoinclusions, J. Eur. Ceram. Soc., 41(2021), No. 6, p. 3466. doi: 10.1016/j.jeurceramsoc.2021.01.026
|