留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1915
  • HTML全文浏览量:  328
  • PDF下载量:  62
  • 被引次数: 0
Seshadri Seetharaman, Lijun Wang,  and Haijuan Wang, Slags containing transition metal (chromium and vanadium) oxides—Conversion from ticking bombs to valuable resources: Collaborative studies between KTH and USTB, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 750-757. https://doi.org/10.1007/s12613-022-2424-5
Cite this article as:
Seshadri Seetharaman, Lijun Wang,  and Haijuan Wang, Slags containing transition metal (chromium and vanadium) oxides—Conversion from ticking bombs to valuable resources: Collaborative studies between KTH and USTB, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 750-757. https://doi.org/10.1007/s12613-022-2424-5
引用本文 PDF XML SpringerLink
特约综述

含过渡金属(铬和钒)氧化物的炉渣—从定时炸弹到有价值资源的转化:KTH与USTB的合作研究

  • 通讯作者:

    王海娟    E-mail: wanghaijuan@ustb.edu.cn

文章亮点

  • 阐述了多年来瑞典皇家工学院(KTH)和北京科技大学(USTB)在含有过渡金属元素(铬和钒)钢渣方面的主要合作研究成果,包括:
  • (1) 测定了低氧势下熔渣中Cr和V氧化物的热力学活度。
  • (2) 采用XANES和Knudsen cell-mass spectrometric method等方法测定了渣中Cr和V的价态。
  • (3) 热力学研究结合拉曼光谱(Raman spectroscopy)确定了含铬炉渣的硫容量和结构。
  • (4) 使用CO2–O2混合气体对合金钢熔体进行脱碳,从而降低铬等金属的损失。
  • (5) 通过基础研究,确定了气化法提取渣及矿石中V的新方法。
  • (6) 提出从炉渣中回收过渡金属的熔盐电解提取新工艺。
  • 随着钢铁工业在世界范围内的高速发展,含过渡金属元素(尤其是铬和钒)的废渣量也相应增加,这对环境造成了严重的威胁。因此深入了解含过渡金属氧化物炉渣的性质,以及如何利用渣来回收和利用有价值的金属是至关重要的。为此,北京科技大学(USTB)和瑞典皇家工学院(KTH)几十年来一直就含过渡金属元素的炉渣方面进行合作研究。这些研究从基础研究的角度出发,更好地了解含过渡金属元素炉渣的结构和性能,并开展了工业实验。研究主要集中三“R”,即过渡金属元素的保留(retention)、回收(recovery)和利用(recycling)。本文着重介绍了USTB和KTH联合开展的相关研究的一些重要成果,主要包括铬和钒氧化物的热力学活度研究以及渣中Cr和V价态的测定、含有铬元素的渣的硫容和结构、采用CO2–O2混合气体对含铬合金钢脱碳影响研究、渣中V元素的气化回收以及渣中过渡金属氧化物熔盐法回收提取新工艺等几个方面。
  • Invited Review

    Slags containing transition metal (chromium and vanadium) oxides—Conversion from ticking bombs to valuable resources: Collaborative studies between KTH and USTB

    + Author Affiliations
    • As the steel industry expands worldwide, slag dumps with transition metals (especially chromium and vanadium) are becoming more common, posing a serious environmental threat. Understanding the properties of slags containing transition metal oxides, as well as how to use the slags to recover and recycle metal values, is critical. Toward this end, the University of Science and Technology Beijing (USTB) and Royal Institute of Technology (KTH) have been collaborating on slags containing transition metals for decades. The research was carried out from a fundamental viewpoint to get a better understanding of the structure of these slags and their properties, as well as industrial practices. The research focused on the three “R”s, viz. retention, recovery, and recycling. The present paper attempts to highlight some of the important achievements in these joint studies.
    • loading
    • [1]
      L.J. Wang, K.C. Chou, and S. Seetharaman, A new method for evaluating some thermophysical properties for ternary system, High Temp. Mater. Processes, 27(2008), No. 2, p. 119.
      [2]
      Q.F. Shu, J.Y. Zhang, D. Sichen, and S. Seetharaman, ThermoSlag—A prediction and evaluation software on thermophysical and thermodynamic properties of molten slags, [in] CSM 2003 Annual Meeting Proceedings, 2003, Beijing, p. 598.
      [3]
      M. Persson, J.Y. Zhang, and S. Seetharaman, A thermodynamic approach to a density model for oxide melts, Steel Res. Int., 78(2007), No. 4, p. 290. doi: 10.1002/srin.200705894
      [4]
      P.L. Dong, X.D. Wang, and S. Seetharaman, Thermodynamic activity of chromium oxide in CaO–SiO2–MgO–Al2O3–CrOx melts, Steel Res. Int., 80(2009), No. 3, p. 202. doi: 10.2374/SRI08SP124
      [5]
      P.L. Dong, X.D. Wang, and S. Seetharaman, Activity of VO1.5 in CaO–SiO2–MgO–Al2O3 slags at low vanadium contents and low oxygen pressures, Steel Res. Int., 80(2009), No. 4, p. 251. doi: 10.2374/SRI08SP138
      [6]
      A. Werme, Distribution of vanadium between SiO2 rich slags and carbon saturated liquid iron, Steel Res., 59(1988), No. 1, p. 6. doi: 10.1002/srin.198800266
      [7]
      L.J. Wang, J.P. Yu, K.C. Chou, and S. Seetharaman, Effects of MgO and Al2O3 addition on redox state of chromium in CaO–SiO2–CrOx slag system by XPS method, Metall. Mater. Trans. B, 46(2015), No. 4, p. 1802. doi: 10.1007/s11663-015-0353-7
      [8]
      H.J. Wang, L.J. Wang, and S. Seetharaman, Determination of vanadium oxidation states in CaO–MgO–Al2O3–SiO2–VOx system by K edge XANES method, Steel Res. Int., 87(2016), No. 2, p. 199. doi: 10.1002/srin.201500256
      [9]
      L.J. Wang, L.D. Teng, K.C. Chou, and S. Seetharaman, Determination of vanadium valence state in CaO–MgO–Al2O3–SiO2 system by high-temperature mass spectrometry, Metall. Mater. Trans. B, 44(2013), No. 4, p. 948. doi: 10.1007/s11663-013-9836-6
      [10]
      L.J. Wang and S. Seetharaman, Experimental studies on the oxidation states of chromium oxides in slag systems, Metall. Mater. Trans. B, 41(2010), No. 5, p. 946. doi: 10.1007/s11663-010-9383-3
      [11]
      H.J. Wang, Investigations on the Oxidation of Iron–Chromium and Iron–Vanadium Molten Alloys [Dissertation], KTH Sweden, 2010.
      [12]
      W.G. Pei and O. Wijk, Activity-composition relationships in liquid nickel–chromium alloys, Scand. J. Metall., 23(1994), No. 5, p. 224.
      [13]
      E.B. Pretorius and A. Muan, Activity–composition relations of chromium oxide in silicate melts at 1500°C under strongly reducing conditions, J. Am. Ceram. Soc., 75(1992), No. 6, p. 1364. doi: 10.1111/j.1151-2916.1992.tb04196.x
      [14]
      Y.P. Xiao and L. Holappa, Determination of activities in slags containing chromium oxides, ISIJ Int., 33(1993), No. 1, p. 66. doi: 10.2355/isijinternational.33.66
      [15]
      K. Morita, M. Mori, M.X. Guo, T. Ikagawa, and N. Sano, Activity of chromium oxide and phase relations for the CaO–SiO2–CrOx system at 1873 K under moderately reducing conditions, Steel Res., 70(1999), No. 8-9, p. 319. doi: 10.1002/srin.199905647
      [16]
      A.J. Berry and H.St.C. O’Neill, A XANES determination of the oxidation state of chromium in silicate glasses, Am. Mineral., 89(2004), No. 5-6, p. 790. doi: 10.2138/am-2004-5-613
      [17]
      M.G. Frohberg and K. Richter, Reduction and oxidation equilibria between bivalent and trivalent chromium in liquid basic lime/silica/chromium oxide slags, Arch. Eisenbuttenwes., 39(1968), p. 799.
      [18]
      L.J. Wang, Experimental and Modelling Studies of the Thermophysical and Thermochemical Properties of Some Slag Systems [Dissertation], KTH Sweden, 2009.
      [19]
      R. Mittelstadt and K. Schwerdtfeger, The dependence of the oxidation state of vanadium on the oxygen pressure in melts of VOx, Na2O–VOx, and CaO–SiO2–VOx, Metall. Trans. B, 21(1990), No. 1, p. 111. doi: 10.1007/BF02658122
      [20]
      R. Inoue and H. Suito, Distribution of vanadium between liquid iron and MgO saturated slags of the system CaO–MgO–FeOx–SiO2, ISIJ Int., 22(1982), No. 9, p. 705. doi: 10.2355/isijinternational1966.22.705
      [21]
      L.J. Wang and S. Seetharaman, Experimental studies on the sulfide capacities of CaO–SiO2–CrOx slags, Metall. Mater. Trans. B, 41(2010), No. 2, p. 367. doi: 10.1007/s11663-009-9338-8
      [22]
      L.J. Wang, Y.X. Wang, Q. Wang, and K.C. Chou, Raman structure investigations of CaO–MgO–Al2O3–SiO2–CrOx and its correlation with sulfide capacity, Metall. Mater. Trans. B, 47(2016), No. 1, p. 10. doi: 10.1007/s11663-015-0469-9
      [23]
      L.J. Wang, M. Hayashi, K.C. Chou, and S. Seetharaman, An insight into slag structure from sulphide capacities, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1338. doi: 10.1007/s11663-012-9713-8
      [24]
      H.J. Wang, N.N. Viswanathan, N.B. Ballal, and S. Seetharaman, Modeling of reactions between gas bubble and molten metal bath—Experimental validation in the case of decarburization of Fe–Cr–C melts, High Temp. Mater. Processes, 28(2009), No. 6, p. 407. doi: 10.1515/HTMP.2009.28.6.407
      [25]
      H.J. Wang, N.N. Viswanathan, N.B. Ballal, and S. Seetharaman, Modelling of physico-chemical phenomena between gas inside a bubble and liquid metal during injection of oxidant gas, Int. J. Chem. Reactor Eng., 8(2010), No. 1, art. No. A33. doi: 10.2202/1542-6580.2127
      [26]
      H.J. Wang, M.M. Nzotta, L. Teng, and S. Seetharaman, Decarburization of ferrochrome and high alloy steels with optimized gas and slag phases towards improved Cr retention, J. Min. Metall. Sect. B Metall., 49(2013), No. 2, p. 175. doi: 10.2298/JMMB120813010W
      [27]
      H.J. Wang, H.C. Yu, S.J. Chu, D.C. Wu, and Z.B. Xu, Exploratory application of CO2 in M-LCFeCr production with converter process, Chin. J. Eng., 38(2016), No. S1, p. 146.
      [28]
      H.J. Wang, H.C. Yu, and Z.B. Xu. Influence of CO2 on the melt temperature of medium and low carbon ferrochrome during refining in converter, China Sciencepaper, 12(2017), No. 4, p. 434.
      [29]
      Y.L. Gu, H.J. Wang, R. Zhu, J. Wang, M. Lv, and H. Wang, Study on experiment and mechanism of bottom blowing CO2 during the LF refining process, Steel Res. Int., 85(2014), No. 4, p. 589. doi: 10.1002/srin.201300106
      [30]
      H.J. Wang, H. Yu, L. Teng, and S. Seetharaman, Evaluation on material and heat balance of EAF processes with introduction of CO2, J. Min. Metall. Sect. B., 52(2016), No. 1, p. 1. doi: 10.2298/JMMB150627002W
      [31]
      H.J. Wang, R. Zhu, X.L. Wang, and Z.Z. Li, Utilization of CO2 in metallurgical processes in China, Miner. Process. Extr. Metall., 126(2017), No. 1-2, p. 47. doi: 10.1080/03719553.2016.1255401
      [32]
      H.J. Wang, L.D. Teng, J.Y. Zhang, and S. Seetharaman, Oxidation of Fe–V melts under CO2–O2 gas mixtures, Metall. Mater. Trans. B, 41(2010), No. 5, p. 1042. doi: 10.1007/s11663-010-9391-3
      [33]
      S. Seetharaman, T. Shyrokykh, C. Schröder, and P.R. Scheller, Vaporization studies from slag surfaces using a thin film technique, Metall. Mater. Trans. B, 44(2013), No. 4, p. 783. doi: 10.1007/s11663-013-9865-1
      [34]
      T. Shyrokykh, X.W. Wei, S. Seetharaman, and O. Volkova, Vaporization of vanadium pentoxide from CaO–SiO2–VOx slags during alumina dissolution, Metall. Mater. Trans. B, 52(2021), No. 3, p. 1472. doi: 10.1007/s11663-021-02114-9
      [35]
      S. Seetharaman, G.J. Albertsson, and P. Scheller, Studies of vaporization of chromium from thin slag films at steelmaking temperatures in oxidizing atmosphere, Metall. Mater. Trans. B, 44(2013), No. 5, p. 1280. doi: 10.1007/s11663-013-9904-y
      [36]
      X.L. Ge, O. Grinder, and S. Seetharaman, The salt extraction process: A novel route for metal extraction Part I – Cr, Fe recovery from EAF slags and low grade chromite ores, Miner. Process. Extr. Metall., 119(2010), No. 1, p. 27. doi: 10.1179/037195509X12585446038726
      [37]
      X.L. Ge and S. Seetharaman, The salt extraction process – a novel route for metal extraction Part 2 – Cu/Fe extraction from copper oxide and sulphides, Miner. Process. Extr. Metall., 119(2010), No. 2, p. 93. doi: 10.1179/174328510X498116
      [38]
      S. Seetharaman and O. Grinder, New extraction process for recovery of metals in glass deposits, [in] Linnaeus ECO-TECH´14, Kalmar, Sweden, 2014.
      [39]
      S.Q. Jiao, H.D. Jiao, W.L. Song, M.Y. Wang, and J.G. Tu, A review on liquid metals as cathodes for molten salt/oxide electrolysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1588. doi: 10.1007/s12613-020-1971-x
      [40]
      X.L. Xi, M. Feng, L.W. Zhang, and Z.R. Nie, Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1599. doi: 10.1007/s12613-020-2175-0
      [41]
      A. Abbasalizadeh, Electrochemical Recovery of Rare Earth Metals in Molten Salts [Dissertation], Delft University of Technology, Netherlands, 2018.

    Catalog


    • /

      返回文章
      返回