留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 2
Feb.  2023

图(12)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  864
  • HTML全文浏览量:  233
  • PDF下载量:  75
  • 被引次数: 0
Qiangjian Gao, Guopeng Zhang, Haiyan Zheng, Xin Jiang, and Fengman Shen, Combustion performance of pulverized coal and corresponding kinetics study after adding the additives of Fe2O3 and CaO, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 314-323. https://doi.org/10.1007/s12613-022-2432-5
Cite this article as:
Qiangjian Gao, Guopeng Zhang, Haiyan Zheng, Xin Jiang, and Fengman Shen, Combustion performance of pulverized coal and corresponding kinetics study after adding the additives of Fe2O3 and CaO, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 314-323. https://doi.org/10.1007/s12613-022-2432-5
引用本文 PDF XML SpringerLink
研究论文

Fe2O3和CaO添加剂对煤粉燃烧性能的影响及相关动力学研究

  • 通讯作者:

    高强健    E-mail: gaoqiangjian@163.com

  • 喷吹煤粉在高炉内的燃烧特性被认为是确定适宜喷煤量的关键参数。本文通过热重分析法考察了Fe2O3和CaO两种添加剂对煤粉燃烧特性的影响。结果表明:Fe2O3和CaO对煤粉燃烧都有促进作用。煤粉的着火指数(Ci),燃尽指数(Db)和综合燃烧指数(Sn)都得到不同程度的改善。当Fe2O3添加比例由0增至5.0wt%时,Sn由1.37×10−6增至2.16×10−6 %2·min−2·°C−3。同时,研究采用Coats-Redfern method来解析煤粉燃烧动力学过程。结果表明:配加添加剂后,煤粉燃烧活化能(E)逐渐降低。当Fe2O3添加比例由0增至5.0wt%时,E由56.54降至35.75 kJ⋅mol−1,这也再次证明了添加剂对煤粉的燃烧有促进作用。此外,高炉喷煤过程使用纯Fe2O3和CaO物质是不经济的。出于成本考虑,研究选取含有Fe2O3和CaO物质的除尘灰作为添加剂,开展了相关的研究,并获得了同样的效果。因此,含Fe2O3和CaO物质的除尘灰是煤粉助燃剂的潜在选择,该方法也为处置除尘灰类固废提供了一种可行的方向。
  • Research Article

    Combustion performance of pulverized coal and corresponding kinetics study after adding the additives of Fe2O3 and CaO

    + Author Affiliations
    • Combustion performance of pulverized coal (PC) in blast furnace (BF) process is regarded as a criteria parameter to assess the proper injection dosage of PC. In this paper, effects of two kinds of additives, Fe2O3 and CaO, on PC combustion were studied using the thermo-gravimetric method. The results demonstrate that both the Fe2O3 and CaO can promote combustion performance index of PC including ignition index (Ci), burnout index (Db), as well as comprehensive combustibility index (Sn). The Sn increases from 1.37 × 10−6 to 2.16 × 10−6 %2·min−2·°C−3 as the Fe2O3 proportion increases from 0 to 5.0wt%. Additionally, the combustion kinetics of PC was clarified using the Coats-Redfern method. The results show that the activation energy (E) of PC combustion decreases after adding the above additives. For instance, the E decreases from 56.54 to 35.75 kJ/mol when the Fe2O3 proportion increases from 0 to 5.0wt%, which supports the improved combustion performance. Moreover, it is uneconomic to utilize pure Fe2O3 and CaO in production. Based on economy analysis, we selected the iron-bearing dust (IBD) which contains much Fe2O3 and CaO component to investigate, and got the same effects. Therefore, the IBD is a potential option for catalytic PC combustion in BF process.
    • loading
    • [1]
      Q.J. Gao, F.M. Shen, X. Jiang, G. Wei, and H.Y. Zheng, Gas-solid reduction kinetic model of MgO-fluxed pellets, Int. J. Miner. Metall. Mater., 21(2014), No. 1, p. 12. doi: 10.1007/s12613-014-0859-z
      [2]
      J.H. Liao, A.B. Yu, and Y.S. Shen, Modelling the injection of upgraded brown coals in an ironmaking blast furnace, Powder Technol., 314(2017), p. 550. doi: 10.1016/j.powtec.2016.11.005
      [3]
      F.M. Shen, Q.J. Gao, X. Jiang, G. Wei, and H.Y. Zheng, Effect of magnesia on the compressive strength of pellets, Int. J. Miner. Metall. Mater., 21(2014), No. 5, p. 431. doi: 10.1007/s12613-014-0926-5
      [4]
      J.G. Mathieson, J.S. Truelove, and H. Rogers, Toward an understanding of coal combustion in blast furnace tuyere injection, Fuel, 84(2005), No. 10, p. 1229. doi: 10.1016/j.fuel.2004.06.036
      [5]
      L.Z. Jin and X.M. Niu, Micromorphology and safety properties of meager and meager-lean coal for blast furnace injection, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 774. doi: 10.1007/s12613-020-2104-2
      [6]
      D.L. Wu, P. Zhou, H.J. Yan, P.Y. Shi, and C.Q. Zhou, Numerical investigation of the effects of size segregation on pulverized coal combustion in a blast furnace, Powder Technol., 342(2019), p. 41. doi: 10.1016/j.powtec.2018.09.067
      [7]
      C. Wang, J.L. Zhang, G.W. Wang, K.X. Jiao, Z.J. Liu, and K.C. Chou, Combustion characteristics and kinetics of anthracite with added chlorine, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 745. doi: 10.1007/s12613-017-1458-6
      [8]
      Y.Q. Li, X.H. Zhang, J.Y. Zhang, J.M. Zhou, and H.J. Yan, Numerical simulation and optimization of pulverized coal injection with enriched oxygen into blast furnace, Appl. Therm. Eng., 67(2014), No. 1-2, p. 72. doi: 10.1016/j.applthermaleng.2014.02.062
      [9]
      D.W. Xiang, F.M. Shen, J.L. Yang, et al., Combustion characteristics of unburned pulverized coal and its reaction kinetics with CO2, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 811. doi: 10.1007/s12613-019-1791-z
      [10]
      J.A. de Castro, G.D.M. Araújo, I.D.O. da Mota, Y. Sasaki, and J.I. Yagi, Analysis of the combined injection of pulverized coal and charcoal into large blast furnaces, J. Mater. Res. Technol., 2(2013), No. 4, p. 308. doi: 10.1016/j.jmrt.2013.06.003
      [11]
      H.B. Zhu, W.L. Zhan, Z.J. He, Y.C. Yu, Q.H. Pang, and J.H. Zhang, Pore structure evolution during the coke graphitization process in a blast furnace, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1226. doi: 10.1007/s12613-019-1927-1
      [12]
      H.B. Jiang, J.L. Zhang, J.X. Fu, J. Chang, and J. Li, Properties and structural optimization of pulverized coal for blast furnace injection, J. Iron Steel Res. Int., 18(2011), No. 3, p. 6. doi: 10.1016/S1006-706X(11)60029-0
      [13]
      D.W. Xiang, F.M. Shen, X. Jiang, J.L. Yang, X.J. Li, and Q.J. Gao, Protective mechanism of unburned pulverized coal to coke in blast furnace, J. Min. Metall. Sect. B, 55(2019), No. 3, p. 371. doi: 10.2298/JMMB181229041X
      [14]
      J.H. Kim, R.G. Kim, G.B. Kim, and C.H. Jeon, Effect of coal fragmentation on PCI combustion zone in blast furnace, Exp. Therm. Fluid Sci., 79(2016), p. 266. doi: 10.1016/j.expthermflusci.2016.07.020
      [15]
      R.G. Kim, D.F. Li, and C.H. Jeon, Experimental investigation of ignition behavior for coal rank using a flat flame burner at a high heating rate, Exp. Therm. Fluid Sci., 54(2014), p. 212. doi: 10.1016/j.expthermflusci.2013.12.017
      [16]
      R. Luo, Y.F. Zhang, N. Li, Q.L. Zhou, and P. Sun, Experimental study on flow and combustion characteristic of a novel swirling burner based on dual register structure for pulverized coal combustion, Exp. Therm. Fluid Sci., 54(2014), p. 136. doi: 10.1016/j.expthermflusci.2014.01.021
      [17]
      P. Dacombe, M. Pourkashanian, A. Williams, and L. Yap, Combustion-induced fragmentation behavior of isolated coal particles, Fuel, 78(1999), No. 15, p. 1847. doi: 10.1016/S0016-2361(99)00076-9
      [18]
      J. Friedemann, A. Wagner, A. Heinze, S. Krzack, and B. Meyer, Direct optical observation of coal particle fragmentation behavior in a drop-tube reactor, Fuel, 166(2016), p. 382. doi: 10.1016/j.fuel.2015.11.007
      [19]
      S.H. Lee, S.D. Kim, and D.H. Lee, Particle size reduction of anthracite coals during devolatilization in a thermobalance reactor, Fuel, 81(2002), No. 13, p. 1633. doi: 10.1016/S0016-2361(02)00094-7
      [20]
      Y.S. Shen, D. Maldonado, B.Y. Guo, A.B. Yu, P. Austin, and P. Zulli, Computational fluid dynamics study of pulverized coal combustion in blast furnace raceway, Ind. Eng. Chem. Res., 48(2009), No. 23, p. 10314. doi: 10.1021/ie900853d
      [21]
      Y.S. Shen, B.Y. Guo, A.B. Yu, and P. Zulli, Model study of the effects of coal properties and blast conditions on pulverized coal combustion, ISIJ Int., 49(2009), No. 6, p. 819. doi: 10.2355/isijinternational.49.819
      [22]
      E. Abbasi-Atibeh and A. Yozgatligil, A study on the effects of catalysts on pyrolysis and combustion characteristics of Turkish lignite in oxy-fuel conditions, Fuel, 115(2014), p. 841. doi: 10.1016/j.fuel.2013.01.073
      [23]
      F. Shen, X. Peng, and Q. Zhao. The effect of MnO2 on the combustion-supporting efficiency of Pulverized coal and its mechanism, Iron Steel, 33(1998), No. 9, p. 1.
      [24]
      J.L. Zhang, G.W. Wang, J.G. Shao, Y.X. Chen, and T.J. Yang, Pulverized coal combustion of nitrogen free blast furnace, J. Iron Steel Res. Int., 20(2013), No. 3, p. 1. doi: 10.1016/S1006-706X(13)60061-8
      [25]
      X.G. Li, B.G. Ma, L. Xu, Z.T. Luo, and K. Wang, Catalytic effect of metallic oxides on combustion behavior of high ash coal, Energy Fuels, 21(2007), No. 5, p. 2669. doi: 10.1021/ef070054v
      [26]
      Z.Q. Wang, C. Hong, Y. Xing, Y.F. Li, L.H. Feng, and M.M. Jia, Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts, Waste Manage., 74(2018), p. 288. doi: 10.1016/j.wasman.2018.01.002
      [27]
      Y.H. Liu, D.F. Che, Y.T. Li, Effect of iron compounds on coal combustion characteristics, J. Xian Jiaotong Univ., 34(2000), No. 9, p. 20.
      [28]
      H. Liu, Q. Zhang, H.X. Xing, H.Y. Hu, A.J. Li, and H. Yao, Product distribution and sulfur behavior in sewage sludge pyrolysis: Synergistic effect of Fenton peroxidation and CaO conditioning, Fuel, 159(2015), p. 68. doi: 10.1016/j.fuel.2015.06.067
      [29]
      S.W. Fang, Z.S. Yu, Y. Lin, et al., Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis, Bioresour. Technol., 209(2016), p. 265. doi: 10.1016/j.biortech.2016.03.027
      [30]
      F.M. Shen, B. Sundelin, K. Paulsson, et al., Industrial practice of BiPCI process of pulverized coal injection for blast furnace ironmaking at SSAB, Steel Res. Int., 79(2008), No. 1, p. 11. doi: 10.1002/srin.200806310
      [31]
      General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of the People’s Republic of China, GB/T212-2008: Proximate Analysis of Coal, Standards Press of China, Beijing, 2008.
      [32]
      General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of the People’s Republic of China, GB/T213-2008: Determination of Calorific Value of Coal, Beijing, 2008.
      [33]
      R.L. Carr, Evaluating flow properties of solids, Chem. Eng. J., 72(1965), No. 2, p. 163.
      [34]
      X.G. Li, Y. Lv, B.G. Ma, S.W. Jian, and H.B. Tan, Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal, Bioresour. Technol., 102(2011), No. 20, p. 9783. doi: 10.1016/j.biortech.2011.07.117
      [35]
      Y.S. Lin, X.Q. Ma, X.X. Ning, and Z.S. Yu, TGA-FTIR analysis of co-combustion characteristics of paper sludge and oil-palm solid wastes, Energy Convers. Manage., 89(2015), p. 727. doi: 10.1016/j.enconman.2014.10.042
      [36]
      G.W. Wang, J.L. Zhang, J.G. Shao, et al., Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends, Energy Convers. Manage., 124(2016), p. 414. doi: 10.1016/j.enconman.2016.07.045
      [37]
      S.S.J. Warne, Thermal analysis and coal assessment: An overview with new developments, Thermochim. Acta, 272(1996), p. 1. doi: 10.1016/0040-6031(95)02459-X
      [38]
      G.R. Liu, H.J. Song, and J.H. Wu, Thermogravimetric study and kinetic analysis of dried industrial sludge pyrolysis, Waste Manage., 41(2015), p. 128. doi: 10.1016/j.wasman.2015.03.042
      [39]
      K.B. Larionov, I.V. Mishakov, K.V. Slyusarskii, V.E. Gubin, and A.A. Vedyagin, Intensification of the oxidation of lignite and coal by an activating additive of Fe(NO3)2, Solid Fuel Chem., 53(2019), No. 5, p. 262. doi: 10.3103/S0361521919050070
      [40]
      C. Zou, L. Zhang, S.Y. Cao, and C.G. Zheng, A study of combustion characteristics of pulverized coal in O2/H2O atmosphere, Fuel, 115(2014), p. 312. doi: 10.1016/j.fuel.2013.07.025
      [41]
      Y.N. Bai, J.L. Zhang, B.X. Su, H.W. Guo, and B.J. Yan, Kinetics study of Fe2O3 catalyzing pulverized coal combustion, J. Iron Steel Res., 25(2013), No. 6, p. 8.
      [42]
      X.Z. Gong, Z.C. Guo, and Z. Wang, Reactivity of pulverized coals during combustion catalyzed by CeO2 and Fe2O3, Combust. Flame, 157(2010), No. 2, p. 351. doi: 10.1016/j.combustflame.2009.06.025
      [43]
      C. Zou, L.Y. Wen, S.F. Zhang, C.G. Bai, and G.L. Yin, Evaluation of catalytic combustion of pulverized coal for use in pulverized coal injection (PCI) and its influence on properties of unburnt chars, Fuel Process. Technol., 119(2014), p. 136. doi: 10.1016/j.fuproc.2013.10.022
      [44]
      M.Y. Kou, H.B. Zuo, X.J. Ning, G.W. Wang, Z.B. Hong, H.F. Xu, and S.L. Wu, Thermogravimetric study on gasification kinetics of hydropyrolysis char derived from low rank coal, Energy, 188(2019), art. No. 116030. doi: 10.1016/j.energy.2019.116030
      [45]
      R.G. Guan, W. Li, and B.Q. Li, Effects of Ca-based additives on desulfurization during coal pyrolysis, Fuel, 82(2003), No. 15-17, p. 1961. doi: 10.1016/S0016-2361(03)00188-1
      [46]
      S. Cheng, Y.H. Wang, N.B. Gao, F. Takahashi, A.M. Li, and K. Yoshikawa, Pyrolysis of oil sludge with oil sludge ash additive employing a stirred tank reactor, J. Anal. Appl. Pyrolysis, 120(2016), p. 511. doi: 10.1016/j.jaap.2016.06.024
      [47]
      X.X. Wu and L.R. Radovic, Catalytic oxidation of carbon/carbon composite materials in the presence of potassium and calcium acetates, Carbon, 43(2005), No. 2, p. 333. doi: 10.1016/j.carbon.2004.09.025
      [48]
      Z.G. Zhang, T. Kyotani, and A. Tomita, Dynamic behavior of surface oxygen complexes during oxygen-chemisorption and subsequent temperature-programmed desorption of calcium-loaded coal chars, Energy Fuels, 3(1989), No. 5, p. 566. doi: 10.1021/ef00017a006
      [49]
      J.X. Zhang, S.X. Liu, F.S. Niu, and Z.S. Xu, Reviews on the comprehensive utilization of metallurgical dust from iron and steel plant, Appl. Mech. Mater., 295-298(2013), p. 3075. doi: 10.4028/www.scientific.net/AMM.295-298.3075

    Catalog


    • /

      返回文章
      返回