Cite this article as: |
Yan Ma, Isnaldi R. Souza Filho, Xue Zhang, Supriya Nandy, Pere Barriobero-Vila, Guillermo Requena, Dirk Vogel, Michael Rohwerder, Dirk Ponge, Hauke Springer, and Dierk Raabe, Hydrogen-based direct reduction of iron oxide at 700°C: Heterogeneity at pellet and microstructure scales, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1901-1907. https://doi.org/10.1007/s12613-022-2440-5 |
马焱 E-mail: y.ma@mpie.de
Raabe Dierk E-mail: d.raabe@mpie.de
由于使用含碳物质作为铁矿石还原的还原剂以及燃料,钢铁生产过程排放了所有工业二氧化碳排放量总和的三分之一,使其成为全球变暖的关键驱动因素。因此,众多研究工作旨在研究用绿色氢气代替含碳还原剂还原铁矿石。氢基直接还原是一种有吸引力的加工技术,因为直接还原炉在钢铁行业中已被广泛应用,虽然目前甲烷和一氧化碳作为主要还原剂。相比于碳基还原剂,氢气在竖炉球团团聚体的扩散速度快得多。然而,对于大量钢铁生产需求,氢基直接还原的还原动力学仍然非常缓慢,并且氢气消耗量大大超过了化学计量所需的量。因此,本研究的重点是更好地理解铁矿石球团空间梯度、形貌和内部微观结构对氢基直接还原过程中还原效率和金属化率的影响。为此,本研究工作使用了同步辐射加速器高能X射线衍射和电子显微镜以及电子背散射衍射和能量散射X射线谱技术对商业化直接还原球团矿进行了研究。本研究揭示了不同相界面、自由表面及其相关的成核和生长机制的相互作用,为开发快速高效、更适合氢基直接还原的铁矿石球团提供了基础。
Steel production causes a third of all industrial CO2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hydrogen-based direct reduction (HyDR) is an attractive processing technology, given that direct reduction (DR) furnaces are routinely operated in the steel industry but with CH4 or CO as reductants. Hydrogen diffuses considerably faster through shaft-furnace pellet agglomerates than carbon-based reductants. However, the net reduction kinetics in HyDR remains extremely sluggish for high-quantity steel production, and the hydrogen consumption exceeds the stoichiometrically required amount substantially. Thus, the present study focused on the improved understanding of the influence of spatial gradients, morphology, and internal microstructures of ore pellets on reduction efficiency and metallization during HyDR. For this purpose, commercial DR pellets were investigated using synchrotron high-energy X-ray diffraction and electron microscopy in conjunction with electron backscatter diffraction and chemical probing. Revealing the interplay of different phases with internal interfaces, free surfaces, and associated nucleation and growth mechanisms provides a basis for developing tailored ore pellets that are highly suited for a fast and efficient HyDR.
[1] |
D. Raabe, C.C. Tasan and E.A. Olivetti, Strategies for improving the sustainability of structural metals, Nature, 575(2019), No. 7781, p. 64. doi: 10.1038/s41586-019-1702-5
|
[2] |
World Steel Association, World Steel in Figures 2021 [2022-01-24]. https://worldsteel.org/wp-content/uploads/2021-World-Steel-in-Figures.pdf
|
[3] |
M. Flores-Granobles and M. Saeys, Minimizing CO2 emissions with renewable energy: A comparative study of emerging technologies in the steel industry, Energy Environ. Sci., 13(2020), No. 7, p. 1923. doi: 10.1039/D0EE00787K
|
[4] |
F. Patisson and O. Mirgaux, Hydrogen ironmaking: How it works, Metals, 10(2020), No. 7, p. 922. doi: 10.3390/met10070922
|
[5] |
W. Jaimes and S. Maroufi, Sustainability in steelmaking, Curr. Opin. Green Sustainable Chem., 24(2020), p. 42. doi: 10.1016/j.cogsc.2020.01.002
|
[6] |
M. Pei, M. Petäjäniemi, A. Regnell, and O. Wijk, Toward a fossil free future with HYBRIT: Development of iron and steelmaking technology in Sweden and Finland, Metals, 10(2020), No. 7, p. 972. doi: 10.3390/met10070972
|
[7] |
S. Lechtenböhmer, C. Schneider, M. Yetano Roche, and S. Höller, Re-industrialisation and low-carbon economy—Can they go together? Results from stakeholder-based scenarios for energy-intensive industries in the German state of north Rhine Westphalia Energies, 8(2015), No. 10, p. 11404. doi: 10.3390/en81011404
|
[8] |
M. Fischedick, J. Marzinkowski, P. Winzer, and M. Weigel, Techno-economic evaluation of innovative steel production technologies, J. Clean. Prod., 84(2014), p. 563. doi: 10.1016/j.jclepro.2014.05.063
|
[9] |
S.H. Kim, X. Zhang, Y. Ma, et al., Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700°C, Acta Mater., 212(2021), p. 116933. doi: 10.1016/j.actamat.2021.116933
|
[10] |
I.R. Souza Filho, Y. Ma, M. Kulse, et al., Sustainable steel through hydrogen plasma reduction of iron ore: Process, kinetics, microstructure, chemistry, Acta Mater., 213(2021), p. 116971. doi: 10.1016/j.actamat.2021.116971
|
[11] |
D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, p. 1900108. doi: 10.1002/srin.201900108
|
[12] |
Y. Ma, I.R. Souza Filho, Y. Bai, et al., Hierarchical nature of hydrogen-based direct reduction of iron oxides, Scripta Mater., 213(2022), p. 114571. doi: 10.1016/j.scriptamat.2022.114571
|
[13] |
E.T. Turkdogan and J.V. Vinters, Gaseous reduction of iron oxides: Part I. Reduction of hematite in hydrogen, Metall. Mater. Trans. B, 2(1971), No. 11, p. 3175. doi: 10.1007/BF02814970
|
[14] |
M.V.C. Sastri, R.P. Viswanath, and B. Viswanathan, Studies on the reduction of iron oxide with hydrogen, Int. J. Hydrogen Energy, 7(1982), No. 12, p. 951. doi: 10.1016/0360-3199(82)90163-X
|
[15] |
H.Y. Lin, Y.W. Chen, and C. Li, The mechanism of reduction of iron oxide by hydrogen, Thermochim. Acta, 400(2003), No. 1-2, p. 61. doi: 10.1016/S0040-6031(02)00478-1
|
[16] |
M. Moukassi, P. Steinmetz, B. Dupre, and C. Gleitzer, A study of the mechanism of reduction with hydrogen of pure wustite single crystals, Metall. Trans. B, 14(1983), No. 1, p. 125. doi: 10.1007/BF02670879
|
[17] |
M.J. Tiernan, P.A. Barnes, and G.M.B. Parkes, Reduction of iron oxide catalysts: The investigation of kinetic parameters using rate perturbation and linear heating thermoanalytical techniques, J. Phys. Chem. B, 105(2001), No. 1, p. 220. doi: 10.1021/jp003189+
|
[18] |
J. Zieliński, I. Zglinicka, L. Znak, and Z. Kaszkur, Reduction of Fe2O3 with hydrogen, Appl. Catal. A Gen., 381(2010), No. 1-2, p. 191. doi: 10.1016/j.apcata.2010.04.003
|
[19] |
A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2: Part I: Low temperature reduction of hematite, Thermochim. Acta, 447(2006), No. 1, p. 89. doi: 10.1016/j.tca.2005.10.004
|
[20] |
A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2: Part II: Low temperature reduction of hematite, Thermochim. Acta, 456(2007), No. 2, p. 75. doi: 10.1016/j.tca.2007.01.014
|
[21] |
H.B. Zuo, C. Wang, J.J. Dong, K.X. Jiao, and R.S. Xu, Reduction kinetics of iron oxide pellets with H2 and CO mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 7, p. 688. doi: 10.1007/s12613-015-1123-x
|
[22] |
Q.T. Tsay, W.H. Ray, and J. Szekely, The modeling of hematite reduction with hydrogen plus carbon monoxide mixtures: Part I. The behavior of single pellets, AIChE J., 22(1976), No. 6, p. 1064. doi: 10.1002/aic.690220617
|
[23] |
E. Kawasaki, J. Sanscrainte, and T.J. Walsh, Kinetics of reduction of iron oxide with carbon monoxide and hydrogen, AIChE J., 8(1962), No. 1, p. 48. doi: 10.1002/aic.690080114
|
[24] |
K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymański, and T. Wiltowski, Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process, Int. J. Hydrogen Energy, 30(2005), No. 15, p. 1543. doi: 10.1016/j.ijhydene.2004.10.013
|
[25] |
K. Piotrowski, K. Mondal, T. Wiltowski, P. Dydo, and G. Rizeg, Topochemical approach of kinetics of the reduction of hematite to wüstite, Chem. Eng. J., 131(2007), No. 1-3, p. 73. doi: 10.1016/j.cej.2006.12.024
|
[26] |
H. Hamadeh, O. Mirgaux, and F. Patisson, Detailed modeling of the direct reduction of iron ore in a shaft furnace, Materials (Basel), 11(2018), No. 10, art. No. 1865.
|
[27] |
A. Bonalde, A. Henriquez, and M. Manrique, Kinetic analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent, ISIJ Int., 45(2005), No. 9, p. 1255. doi: 10.2355/isijinternational.45.1255
|
[28] |
M. Auinger, D. Vogel, A. Vogel, M. Spiegel, and M. Rohwerder, A novel laboratory set-up for investigating surface and interface reactions during short term annealing cycles at high temperatures, Rev. Sci. Instrum., 84(2013), No. 8, p. 085108. doi: 10.1063/1.4817310
|
[29] |
A.P. Hammersley, FIT2D: A multi-purpose data reduction, analysis and visualization program, J. Appl. Crystallogr., 49(2016), No. 2, p. 646. doi: 10.1107/S1600576716000455
|
[30] |
L. Lutterotti, Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction, Nucl. Instrum. Methods Phys. Res., Sect. B, 268(2010), No. 3-4, p. 334. doi: 10.1016/j.nimb.2009.09.053
|
[31] |
A. Ranzani da Costa, D. Wagner, and F. Patisson, Modelling a new, low CO2 emissions, hydrogen steelmaking process, J. Clean. Prod., 46(2013), p. 27. doi: 10.1016/j.jclepro.2012.07.045
|
[32] |
D. Wagner, O. Devisme, F. Patisson, and D. Ablitzer, A laboratory study of the reduction of iron oxides by hydrogen, [in] F. Kongoli and R.G. Reddy, eds., Proceedings of Sohn International Symposium, San Diego, 2006, p. 111.
|
[33] |
W.C. Mao and W.G. Sloof, Reduction kinetics of wüstite scale on pure iron and steel sheets in Ar and H2 gas mixture, Metall. Mater. Trans. B, 48(2017), No. 5, p. 2707. doi: 10.1007/s11663-017-1037-2
|
[34] |
Y. Bai, J. R. Mianroodi, Y. Ma, A.K. da Silva, B. Svendsen, and D. Raabe, Chemo-mechanical phase-field modeling of iron oxide reduction with hydrogen, Acta Mater., 231(2022), p. 117899. doi: 10.1016/j.actamat.2022.117899
|