留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 5
Apr.  2022

图(6)

数据统计

分享

计量
  • 文章访问数:  1640
  • HTML全文浏览量:  571
  • PDF下载量:  103
  • 被引次数: 0
Simeng Zhang, Gaojing Yang, Xiaoyun Li, Yejing Li, Zhaoxiang Wang, and Liquan Chen, Electrolyte and current collector designs for stable lithium metal anodes, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 953-964. https://doi.org/10.1007/s12613-022-2442-3
Cite this article as:
Simeng Zhang, Gaojing Yang, Xiaoyun Li, Yejing Li, Zhaoxiang Wang, and Liquan Chen, Electrolyte and current collector designs for stable lithium metal anodes, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 953-964. https://doi.org/10.1007/s12613-022-2442-3
引用本文 PDF XML SpringerLink
特约综述

金属锂负极的电解液和集流体设计

  • 通讯作者:

    王兆翔    E-mail: zxwang@iphy.ac.cn

文章亮点

  • (1) 系统地总结了通过优化电解质组分和设计集流体来抑制枝晶生长的一系列工作。
  • (2) 阐明了碳酸酯电解液中锂沉积/溶解的问题并提出了多种解决方法。
  • (3) 总结并提出了设计集流体的结构和成分来诱导金属锂的选择性沉积的方法。
  • 随着便携式电子设备和大规模储能系统对高能量密度电池的需求不断增加,锂金属负极因其具有高理论容量和低氧化还原电位而受到广泛关注。然而,不可控的锂枝晶的生长阻碍了锂金属负极的应用。枝晶生长可能导致内短路、严重的副反应和死锂的形成。因此,迫切需要使锂金属的生长可控。本文总结了我们课题组通过优化电解质组分和设计集流体来抑制枝晶生长的一系列工作。首先,我们阐明了不稳定的固体电解质界面(SEI)膜是导致碳酸酯类电解液中锂沉积电位下降的原因,在此基础上,我们开发了LiPF6–LiNO3双盐电解液和LiFSI-碳酸酯电解液来稳定锂金属负极的SEI膜。此外,我们通过设计集流体的结构和材料来实现可控的锂沉积,包括多孔集流体中的选择性锂沉积、亲锂金属引导的锂沉积和碳化铁诱导的纳米空腔中的欠电位锂沉积。最后,提出了当前研究的局限性和未来的发展前景。
  • Invited Review

    Electrolyte and current collector designs for stable lithium metal anodes

    + Author Affiliations
    • With the increasing demand for high energy-density batteries for portable electronics and large-scale energy storage systems, the lithium metal anode (LMA) has received tremendous attention because of its high theoretical capacity and low redox potential. However, the commercial application of LMAs is impeded by the uncontrolled growth of lithium dendrites. Such dendrite growth may result in internal short circuits, detrimental side reactions, and the formation of dead lithium. Therefore, the growth of lithium metal must be controlled. This article summarizes our recent efforts in inhibiting such dendrite growth, decreasing the detrimental side reactions, and elongating the LMA lifespan by optimizing the electrolyte structure and by designing appropriate current collectors. After identifying that the unstable solid electrolyte interface (SEI) film is responsible for the potential dropping in carbonate electrolytes, we developed LiPF6–LiNO3 dual-salt electrolyte and lithium bis(fluorosulfonyl)imide (LiFSI)–carbonate electrolyte to stabilize the SEI film of LMAs. In addition, we achieved controlled lithium deposition by designing the structure and material of the current collectors, including selective lithium deposition in porous current collectors, lithiophilic metal guided lithium deposition, and iron carbide induced underpotential lithium deposition in nano-cavities. The limitations of the current strategies and prospects for future research are also presented.
    • loading
    • [1]
      B. Liu, J.G. Zhang, and W. Xu, Advancing lithium metal batteries, Joule, 2(2018), No. 5, p. 833. doi: 10.1016/j.joule.2018.03.008
      [2]
      Y.C. Fan, X. Chen, D. Legut, and Q.F. Zhang, Modeling and theoretical design of next-generation lithium metal batteries, Energy Storage Mater., 16(2019), p. 169. doi: 10.1016/j.ensm.2018.05.007
      [3]
      W. Xu, J.L. Wang, F. Ding, et al., Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7(2014), No. 2, p. 513. doi: 10.1039/C3EE40795K
      [4]
      X.B. Cheng, R. Zhang, C.Z. Zhao, and Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: A review, Chem. Rev., 117(2017), No. 15, p. 10403. doi: 10.1021/acs.chemrev.7b00115
      [5]
      D.C. Lin, Y.Y. Liu, and Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12(2017), No. 3, p. 194. doi: 10.1038/nnano.2017.16
      [6]
      P.B. Zhai, Y. Wei, J. Xiao, et al., In situ generation of artificial solid-electrolyte interphases on 3D conducting scaffolds for high-performance lithium-metal anodes, Adv. Energy Mater., 10(2020), No. 8, art. No. 1903339. doi: 10.1002/aenm.201903339
      [7]
      R.J. Braun, B.T. Murray, and J. Soto, Adaptive finite-difference computations of dendritic growth using a phase-field model, Model. Simul. Mater. Sci. Eng., 5(1997), No. 4, p. 365. doi: 10.1088/0965-0393/5/4/006
      [8]
      T. Suzuki, M. Ode, S.G. Kim, and W.T. Kim, Phase-field model of dendritic growth, J. Cryst. Growth, 237-239(2002), p. 125. doi: 10.1016/S0022-0248(01)01891-7
      [9]
      V. Yurkiv, T. Foroozan, A. Ramasubramanian, R. Shahbazian-Yassar, and F. Mashayek, Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior, Electrochim. Acta, 265(2018), p. 609. doi: 10.1016/j.electacta.2018.01.212
      [10]
      Y. Okajima, Y. Shibuta, and T. Suzuki, A phase-field model for electrode reactions with Butler–Volmer kinetics, Comput. Mater. Sci., 50(2010), No. 1, p. 118. doi: 10.1016/j.commatsci.2010.07.015
      [11]
      K.L. Wang, P.C. Pei, Z. Ma, et al., Dendrite growth in the recharging process of zinc–air batteries, J. Mater. Chem. A, 3(2015), No. 45, p. 22648. doi: 10.1039/C5TA06366C
      [12]
      Y.H. Zhang, J.F. Qian, W. Xu, et al., Dendrite-free lithium deposition with self-aligned nanorod structure, Nano Lett., 14(2014), No. 12, p. 6889. doi: 10.1021/nl5039117
      [13]
      F. Ding, W. Xu, G.L. Graff, et al., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135(2013), No. 11, p. 4450. doi: 10.1021/ja312241y
      [14]
      S.F. Fu, C.Z. Zhu, D. Du, and Y.H. Lin, Enhanced electrocatalytic activities of PtCuCoNi three-dimensional nanoporous quaternary alloys for oxygen reduction and methanol oxidation reactions, ACS Appl. Mater. Interfaces, 8(2016), No. 9, p. 6110. doi: 10.1021/acsami.6b00424
      [15]
      D. Aurbach, E. Zinigrad, Y. Cohen, and H. Teller, A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions, Solid State Ionics, 148(2002), No. 3-4, p. 405. doi: 10.1016/S0167-2738(02)00080-2
      [16]
      J. Jeon, S. Yoon, T. Park, et al., Tuning glycolide as an SEI-forming additive for thermally robust Li-ion batteries, J. Mater. Chem., 22(2012), No. 39, p. 21003. doi: 10.1039/c2jm34191c
      [17]
      X.B. Cheng, H.J. Peng, J.Q. Huang, R. Zhang, C.Z. Zhao, and Q. Zhang, Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries, ACS Nano, 9(2015), No. 6, p. 6373. doi: 10.1021/acsnano.5b01990
      [18]
      R.L. Sacci, N.J. Dudney, K.L. More, et al., Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy, Chem. Commun., 50(2014), No. 17, p. 2104. doi: 10.1039/c3cc49029g
      [19]
      S. Choudhury, S. Stalin, D. Vu, et al., Solid-state polymer electrolytes for high-performance lithium metal batteries, Nat. Commun., 10(2019), art. No. 4398. doi: 10.1038/s41467-019-12423-y
      [20]
      W.Y. Li, H.B. Yao, K. Yan, et al., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nat. Commun., 6(2015), art. No. 7436. doi: 10.1038/ncomms8436
      [21]
      L.M. Suo, Y.S. Hu, H. Li, M. Armand, and L.Q. Chen, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries, Nat. Commun., 4(2013), art. No. 1481. doi: 10.1038/ncomms2513
      [22]
      Q.D. Wang, Z.P. Yao, C.L. Zhao, et al., Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries, Nat. Commun., 11(2020), art. No. 4188. doi: 10.1038/s41467-020-17976-x
      [23]
      D.C. Lin, Y.Y. Liu, Z. Liang, et al., Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nat. Nanotechnol., 11(2016), No. 7, p. 626. doi: 10.1038/nnano.2016.32
      [24]
      G.Y. Zheng, S.W. Lee, Z. Liang, et al., Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nat. Nanotechnol., 9(2014), No. 8, p. 618. doi: 10.1038/nnano.2014.152
      [25]
      H. Kwon, J.H. Lee, Y. Roh, et al., An electron-deficient carbon current collector for anode-free Li-metal batteries, Nat. Commun., 12(2021), art. No. 5537. doi: 10.1038/s41467-021-25848-1
      [26]
      J. Pu, J.C. Li, K. Zhang, et al., Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits, Nat. Commun., 10(2019), art. No. 1896. doi: 10.1038/s41467-019-09932-1
      [27]
      R. Pathak, K. Chen, A. Gurung, et al., Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition, Nat. Commun., 11(2020), art. No. 93. doi: 10.1038/s41467-019-13774-2
      [28]
      M.S. Kim, J.H. Ryu, Deepika, et al., Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries, Nat. Energy, 3(2018), No. 10, p. 889. doi: 10.1038/s41560-018-0237-6
      [29]
      X. Liang, Q. Pang, I.R. Kochetkov, et al., A facile surface chemistry route to a stabilized lithium metal anode, Nat. Energy, 2(2017), art. No. 17119. doi: 10.1038/nenergy.2017.119
      [30]
      Z.Y. Tu, S. Choudhury, M.J. Zachman, et al., Fast ion transport at solid–solid interfaces in hybrid battery anodes, Nat. Energy, 3(2018), No. 4, p. 310. doi: 10.1038/s41560-018-0096-1
      [31]
      X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, and Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries, Adv. Funct. Mater., 27(2017), No. 10, art. No. 1605989. doi: 10.1002/adfm.201605989
      [32]
      E. Markevich, G. Salitra, and D. Aurbach, Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries, ACS Energy Lett., 2(2017), No. 6, p. 1337. doi: 10.1021/acsenergylett.7b00163
      [33]
      W.J. Xue, Z. Shi, M.J. Huang, et al., FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries, Energy Environ. Sci., 13(2020), No. 1, p. 212. doi: 10.1039/C9EE02538C
      [34]
      G.X. Li, Q.Q. Huang, X. He, et al., Self-formed hybrid interphase layer on lithium metal for high-performance lithium-sulfur batteries, ACS Nano, 12(2018), No. 2, p. 1500. doi: 10.1021/acsnano.7b08035
      [35]
      X. Li, J.M. Zheng, X.D. Ren, et al., Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives, Adv. Energy Mater., 8(2018), No. 15, art. No. 1703022. doi: 10.1002/aenm.201703022
      [36]
      S.C. Gu, S.W. Zhang, J.W. Han, et al., Nitrate additives coordinated with crown ether stabilize lithium metal anodes in carbonate electrolyte, Adv. Funct. Mater., 31(2021), No. 28, art. No. 2102128. doi: 10.1002/adfm.202102128
      [37]
      N. Piao, S.F. Liu, B. Zhang, et al., Lithium metal batteries enabled by synergetic additives in commercial carbonate electrolytes, ACS Energy Lett., 6(2021), No. 5, p. 1839. doi: 10.1021/acsenergylett.1c00365
      [38]
      C.P. Yang, Y.X. Yin, S.F. Zhang, N.W. Li, and Y.G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nat. Commun., 6(2015), art. No. 8058. doi: 10.1038/ncomms9058
      [39]
      Q.B. Yun, Y.B. He, W. Lv, et al., Chemical dealloying derived 3D porous current collector for Li metal anodes, Adv. Mater., 28(2016), No. 32, p. 6932. doi: 10.1002/adma.201601409
      [40]
      Y. Zhang, Y. Shi, X.C. Hu, et al., A 3D lithium/carbon fiber anode with sustained electrolyte contact for solid-state batteries, Adv. Energy Mater., 10(2020), No. 3, art. No. 1903325. doi: 10.1002/aenm.201903325
      [41]
      J.T. Mao, K.S. Wu, C.K. Ni, et al., Enablement of long-lifespan lithium metal battery via building 3D LixGey alloy framework, Electrochim. Acta, 382(2021), art. No. 138301. doi: 10.1016/j.electacta.2021.138301
      [42]
      X.Y. Yue, Q.Y. Zhou, J. Bao, et al., In situ construction of lithium silicide host with unhindered lithium spread for dendrite-free lithium metal anode, Adv. Funct. Mater., 31(2021), No. 9, art. No. 2008786. doi: 10.1002/adfm.202008786
      [43]
      M.T. Wan, S.J. Kang, L. Wang, et al., Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode, Nat. Commun., 11(2020), art. No. 829. doi: 10.1038/s41467-020-14550-3
      [44]
      Y.Y. Liu, D.C. Lin, P.Y. Yuen, et al., An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes, Adv. Mater., 29(2017), No. 10, art. No. 1605531. doi: 10.1002/adma.201605531
      [45]
      R. Xu, X.Q. Zhang, X.B. Cheng, et al., Artificial soft-rigid protective layer for dendrite-free lithium metal anode, Adv. Funct. Mater., 28(2018), No. 8, art. No. 1705838. doi: 10.1002/adfm.201705838
      [46]
      L.P. Wang, L. Zhang, Q.J. Wang, et al., Long lifespan lithium metal anodes enabled by Al2O3 sputter coating, Energy Storage Mater., 10(2018), p. 16. doi: 10.1016/j.ensm.2017.08.001
      [47]
      X.W. Shen, Y.T. Li, T. Qian, et al., Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery, Nat. Commun., 10(2019), art. No. 900. doi: 10.1038/s41467-019-08767-0
      [48]
      S.M. Zhang, G.J. Yang, S. Liu, et al., Understanding the dropping of lithium plating potential in carbonate electrolyte, Nano Energy, 70(2020), art. No. 104486. doi: 10.1016/j.nanoen.2020.104486
      [49]
      Y.Y. Liu, D.C. Lin, Y.Z. Li, et al., Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode, Nat. Commun., 9(2018), art. No. 3656. doi: 10.1038/s41467-018-06077-5
      [50]
      J.L. Fu, X. Ji, J. Chen, et al., Lithium nitrate regulated sulfone electrolytes for lithium metal batteries, Angew. Chem. Int. Ed. Engl., 59(2020), No. 49, p. 22194. doi: 10.1002/anie.202009575
      [51]
      S.M. Zhang, G.J. Yang, Z.P. Liu, et al., Competitive solvation enhanced stability of lithium metal anode in dual-salt electrolyte, Nano Lett., 21(2021), No. 7, p. 3310. doi: 10.1021/acs.nanolett.1c00848
      [52]
      J.H. Um, K. Kim, J. Park, Y.E. Sung, and S.H. Yu, Revisiting the strategies for stabilizing lithium metal anodes, J. Mater. Chem. A, 8(2020), No. 28, p. 13874. doi: 10.1039/D0TA03774E
      [53]
      G.J. Yang, Y.J. Li, S. Liu, S.M. Zhang, Z.X. Wang, and L.Q. Chen, LiFSI to improve lithium deposition in carbonate electrolyte, Energy Storage Mater., 23(2019), p. 350. doi: 10.1016/j.ensm.2019.04.041
      [54]
      K.Q. Qin, K. Holguin, M. Mohammadiroudbari, et al., Strategies in structure and electrolyte design for high-performance lithium metal batteries, Adv. Funct. Mater., 31(2021), No. 15, art. No. 2009694. doi: 10.1002/adfm.202009694
      [55]
      G.J. Yang, S.M. Zhang, S.T. Weng, et al., Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite, Nano Lett., 21(2021), No. 12, p. 5316. doi: 10.1021/acs.nanolett.1c01436
      [56]
      G.J. Yang, S.M. Zhang, Y.X. Tong, X.Y. Li, Z.X. Wang, and L.Q. Chen, Minimizing carbon particle size to improve lithium deposition on natural graphite, Carbon, 155(2019), p. 9. doi: 10.1016/j.carbon.2019.08.023
      [57]
      C.B. Jin, T.F. Liu, O.W. Sheng, et al., Rejuvenating dead lithium supply in lithium metal anodes by iodine redox, Nat. Energy, 6(2021), No. 4, p. 378. doi: 10.1038/s41560-021-00789-7
      [58]
      C.C. Fang, J.X. Li, M.H. Zhang, et al., Quantifying inactive lithium in lithium metal batteries, Nature, 572(2019), No. 7770, p. 511. doi: 10.1038/s41586-019-1481-z
      [59]
      Y.J. Li, J.Y. Jiao, J.P. Bi, X.F. Wang, Z.X. Wang, and L.Q. Chen, Controlled deposition of Li metal, Nano Energy, 32(2017), p. 241. doi: 10.1016/j.nanoen.2016.12.030
      [60]
      G.J. Yang, Y.J. Li, Y.X. Tong, et al., Lithium plating and stripping on carbon nanotube sponge, Nano Lett., 19(2019), No. 1, p. 494. doi: 10.1021/acs.nanolett.8b04376
      [61]
      C.P. Yang, Y.G. Yao, S.M. He, H. Xie, E. Hitz, and L.B. Hu, Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode, Adv. Mater., 29(2017), No. 38, art. No. 1702714. doi: 10.1002/adma.201702714
      [62]
      X.Y. Li, G.J. Yang, S.M. Zhang, Z.X. Wang, and L.Q. Chen, Improved lithium deposition on silver plated carbon fiber paper, Nano Energy, 66(2019), art. No. 104144. doi: 10.1016/j.nanoen.2019.104144
      [63]
      H.F. Zheng, Q.F. Zhang, Q.L. Chen, et al., 3D lithiophilic–lithiophobic–lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode, J. Mater. Chem. A, 8(2020), No. 1, p. 313. doi: 10.1039/C9TA09505E
      [64]
      Y. Jiang, Z.X. Wang, C.X. Xu, et al., Atomic layer deposition for improved lithiophilicity and solid electrolyte interface stability during lithium plating, Energy Storage Mater., 28(2020), p. 17. doi: 10.1016/j.ensm.2020.01.019
      [65]
      M.S. Kim, Deepika, S.H. Lee, et al., Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as lithium metal anodes, Sci. Adv., 5(2019), No. 10, art. No. eaax5587. doi: 10.1126/sciadv.aax5587
      [66]
      H. Ye, Z.J. Zheng, H.R. Yao, et al., Guiding uniform Li plating/stripping through lithium–aluminum alloying medium for long-life Li metal batteries, Angew. Chem. Int. Ed., 58(2019), No. 4, p. 1094. doi: 10.1002/anie.201811955
      [67]
      P.Y. Gao, H.P. Wu, X.H. Zhang, et al., Optimization of magnesium-doped lithium metal anode for high performance lithium metal batteries through modeling and experiment, Angew. Chem. Int. Ed., 60(2021), No. 30, p. 16506. doi: 10.1002/anie.202103344
      [68]
      Q.S. Xu, J.J. Lin, C.C. Ye, et al., Air-stable and dendrite-free lithium metal anodes enabled by a hybrid interphase of C60 and Mg, Adv. Energy Mater., 10(2020), No. 6, art. No. 1903292. doi: 10.1002/aenm.201903292
      [69]
      S.M. Zhang, G.J. Yang, Z.P. Liu, et al., Phase diagram determined lithium plating/stripping behaviors on lithiophilic substrates, ACS Energy Lett., 6(2021), No. 11, p. 4118. doi: 10.1021/acsenergylett.1c02127
      [70]
      G.J. Yang, X.Y. Li, Z. Guan, et al., Insights into lithium and sodium storage in porous carbon, Nano Lett., 20(2020), No. 5, p. 3836. doi: 10.1021/acs.nanolett.0c00943
      [71]
      B. Xu, L. Shi, X.W. Guo, et al., Nano-CaCO3 templated mesoporous carbon as anode material for Li-ion batteries, Electrochim. Acta, 56(2011), No. 18, p. 6464. doi: 10.1016/j.electacta.2011.04.130
      [72]
      V. Velez, G. Ramos-Sánchez, B. Lopez, L. Lartundo-Rojas, I. González, and L. Sierra, Synthesis of novel hard mesoporous carbons and their applications as anodes for Li and Na ion batteries, Carbon, 147(2019), p. 214. doi: 10.1016/j.carbon.2019.02.083
      [73]
      Y. Mao, H. Duan, B. Xu, et al., Lithium storage in nitrogen-rich mesoporous carbon materials, Energy Environ. Sci., 5(2012), No. 7, p. 7950. doi: 10.1039/c2ee21817h
      [74]
      G.J. Yang, Z.P. Liu, S.T. Weng, et al., Iron carbide allured lithium metal storage in carbon nanotube cavities, Energy Storage Mater., 36(2021), p. 459. doi: 10.1016/j.ensm.2021.01.022
      [75]
      L.F. Wang, M.M. Geng, X.N. Ding, et al., Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
      [76]
      L.Y. Wang, L.F. Wang, R. Wang, et al., Solid electrolyte–electrode interface based on buffer therapy in solid-state lithium batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1584. doi: 10.1007/s12613-021-2278-2

    Catalog


    • /

      返回文章
      返回