留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 5
Apr.  2022

图(11)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  3829
  • HTML全文浏览量:  1134
  • PDF下载量:  276
  • 被引次数: 0
Xuan Liu, Gaoyang Liu, Jilai Xue, Xindong Wang,  and Qingfeng Li, Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1073-1089. https://doi.org/10.1007/s12613-022-2449-9
Cite this article as:
Xuan Liu, Gaoyang Liu, Jilai Xue, Xindong Wang,  and Qingfeng Li, Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1073-1089. https://doi.org/10.1007/s12613-022-2449-9
引用本文 PDF XML SpringerLink
特约综述

氢作为可再生能源的载体助力碳中和:进展与挑战

    * 共同第一作者
  • 通讯作者:

    刘轩    E-mail: xuanliu@ustb.edu.cn

    Qingfeng Li    E-mail: qfli@dtu.dk

文章亮点

  • (1) 讨论氢作为可再生能源的载体助力碳中和的愿景。
  • (2) 综合论述了氢链技术包括水电解制氢、储氢及燃料电池的发展与技术瓶颈。
  • (3) 展望了未来氢链技术的发展方向和应用前景。
  • 通过氢链技术进行能量存储和转换是未来可再生能源大规模利用的公认愿景,也是弥合现有技术差距以实现碳中和战略的关键。本文回顾了可再生能源框架下的氢链技术,包括水电解、储氢和燃料电池技术,对当前的技术发展进行了总结并提出了展望。水电解制氢作为一种能量存储技术,可以扩展达到兆瓦级别,并且其动态运行模式足以匹配可再生能源发电的间歇性。水电解制氢的关键材料问题包括用于碱性电解槽的坚固隔膜、质子交换膜水电解槽析氧和析氢催化剂和电解槽结构材料,还包括对固体氧化物电解槽长期耐用性验证。先进高压储氢罐(高达70 MPa)的研发对未来汽车应用市场具有巨大吸引力,但仍面临关键材料与技术瓶颈。燃料电池是理想的氢燃料利用装置。质子交换膜氢氧燃料电池和固体氧化物燃料电池分别成为汽车和固定应用领域的主导技术。目前,这两种技术都处于准商业化的门槛,具有经过验证的技术准备和环保优点;然而,它们仍然面临诸如匮乏的氢链基础设施、长期耐用性以及高成本等技术瓶颈的限制。
  • Invited Review

    Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues

    + Author Affiliations
    • Energy storage and conversion via a hydrogen chain is a recognized vision of future energy systems based on renewables and, therefore, a key to bridging the technological gap toward a net-zero CO2 emission society. This paper reviews the hydrogen technological chain in the framework of renewables, including water electrolysis, hydrogen storage, and fuel cell technologies. Water electrolysis is an energy conversion technology that can be scalable in megawatts and operational in a dynamic mode to match the intermittent generation of renewable power. Material concerns include a robust diaphragm for alkaline cells, catalysts and construction materials for proton exchange membrane (PEM) cells, and validation of the long-term durability for solid oxide cells. Hydrogen storage via compressed gas up to 70 MPa is optional for automobile applications. Fuel cells favor hydrogen fuel because of its superfast electrode kinetics. PEM fuel cells and solid oxide fuel cells are dominating technologies for automobile and stationary applications, respectively. Both technologies are at the threshold of their commercial markets with verified technical readiness and environmental merits; however, they still face restraints such as unavailable hydrogen fueling infrastructure, long-term durability, and costs to compete with the analog power technologies already on the market.
    • loading
    • [1]
      Intergovermental Panel on Climate Change (IPCC), Sixth Assessment Report, IPCC, Geneva, 2021 [2021-12-03]. https://www.ipcc.ch/assessment-report/ar6/
      [2]
      T. Lockwood, A compararitive review of next-generation carbon capture technologies for coal-fired power plant, Energy Procedia, 114(2017), p. 2658. doi: 10.1016/j.egypro.2017.03.1850
      [3]
      P. Millet and S. Grigoriev, Water electrolysis technologies, [in] L.M. Gandía, G. Arzamendi, and P.M. Diéguez, eds., Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety, Elsevier, Amsterdam, 2013, p. 19.
      [4]
      J.J. Song, C. Wei, Z.F. Huang, C.T. Liu, L. Zeng, X. Wang, and Z.J. Xu, A review on fundamentals for designing oxygen evolution electrocatalysts, Chem. Soc. Rev., 49(2020), No. 7, p. 2196. doi: 10.1039/C9CS00607A
      [5]
      M. Carmo, D.L. Fritz, J. Mergel, and D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38(2013), No. 12, p. 4901. doi: 10.1016/j.ijhydene.2013.01.151
      [6]
      I. Vincent and D. Bessarabov, Low cost hydrogen production by anion exchange membrane electrolysis: A review, Renewable Sustainable Energy Rev., 81(2018), p. 1690. doi: 10.1016/j.rser.2017.05.258
      [7]
      Q. Feng, X.Z. Yuan, G.Y. Liu, B. Wei, Z. Zhang, H. Li, and H.J. Wang, A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies, J. Power Sources, 366(2017), p. 33. doi: 10.1016/j.jpowsour.2017.09.006
      [8]
      L. Bertuccioli, A. Chan, D. Hart, F. Lehner, B. Madden, and E. Standen, Study on Development of Water Electrolysis in the EU, Fuel Cells and Hydrogen Joint Undertaking, 2014 [2021-05-10]. https://www.fch.europa.eu/sites/default/files/FCHJUElectrolysisStudy_FullReport%20(ID%20199214).pdf
      [9]
      C.C. Yang, S.F. Zai, Y.T. Zhou, L. Du, and Q. Jiang, Fe3C-co nanoparticles encapsulated in a hierarchical structure of N-doped carbon as a multifunctional electrocatalyst for ORR, OER, and HER, Adv. Funct. Mater., 29(2019), No. 27, art. No. 1901949.
      [10]
      X.X. Zou and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev., 44(2015), No. 15, p. 5148. doi: 10.1039/C4CS00448E
      [11]
      L.H. Liu, N. Li, J.R. Han, K.L. Yao, and H.Y. Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 503. doi: 10.1007/s12613-021-2352-9
      [12]
      M. Lehner, R. Tichler, H. Steinmüller, and M. Koppe, Power-to-Gas: Technology and Business Models, Springer, New York, 2014.
      [13]
      B. Decourt, B. Lajoie, R. Debarre, and O. Soupa, Hydrogen-based Energy Conversion. More than Storage: System Flexibility, SBC Energy Institute, Paris, 2014.
      [14]
      M.Y. Wang, Z. Wang, X.Z. Gong, and Z.C. Guo, The intensification technologies to water electrolysis for hydrogen production – A review, Renewable Sustainable Energy Rev., 29(2014), p. 573. doi: 10.1016/j.rser.2013.08.090
      [15]
      M.R. Kraglund, D. Aili, K. Jankova, E. Christensen, Q.F. Li, and J.O. Jensen, Zero-gap alkaline water electrolysis using ion-solvating polymer electrolyte membranes at reduced KOH concentrations, J. Electrochem. Soc., 163(2016), No. 11, p. F3125. doi: 10.1149/2.0161611jes
      [16]
      W.E. Mustain and P.A. Kohl, Improving alkaline ionomers, Nat. Energy, 5(2020), No. 5, p. 359. doi: 10.1038/s41560-020-0619-4
      [17]
      C.Q. Li and J.B. Baek, The promise of hydrogen production from alkaline anion exchange membrane electrolyzers, Nano Energy, 87(2021), art. No. 106162. doi: 10.1016/j.nanoen.2021.106162
      [18]
      U. Babic, M. Suermann, F.N. Büchi, L. Gubler, and T.J. Schmidt, Critical review—Identifying critical gaps for polymer electrolyte water electrolysis development, J. Electrochem. Soc., 164(2017), No. 4, p. F387. doi: 10.1149/2.1441704jes
      [19]
      L.G. Li, P.T. Wang, Q. Shao, and X.Q. Huang, Metallic nanostructures with low dimensionality for electrochemical water splitting, Chem. Soc. Rev., 49(2020), No. 10, p. 3072. doi: 10.1039/D0CS00013B
      [20]
      N.T. Suen, S.F. Hung, Q. Quan, N. Zhang, Y.J. Xu, and H.M. Chen, Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives, Chem. Soc. Rev., 46(2017), No. 2, p. 337. doi: 10.1039/C6CS00328A
      [21]
      A. Hauch, S.D. Ebbesen, S.H. Jensen, and M. Mogensen, Highly efficient high temperature electrolysis, J. Mater. Chem., 18(2008), No. 20, art. No. 2331. doi: 10.1039/b718822f
      [22]
      M.A. Laguna-Bercero, Recent advances in high temperature electrolysis using solid oxide fuel cells: A review, J. Power Sources, 203(2012), p. 4. doi: 10.1016/j.jpowsour.2011.12.019
      [23]
      K.F. Chen and S.P. Jiang, Review—Materials degradation of solid oxide electrolysis cells, J. Electrochem. Soc., 163(2016), No. 11, p. F3070. doi: 10.1149/2.0101611jes
      [24]
      P. Moçoteguy and A. Brisse, A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells, Int. J. Hydrogen Energy, 38(2013), No. 36, p. 15887. doi: 10.1016/j.ijhydene.2013.09.045
      [25]
      A. Ursua, L.M. Gandia, and P. Sanchis, Hydrogen production from water electrolysis: Current status and future trends, Proc. IEEE, 100(2012), No. 2, p. 410. doi: 10.1109/JPROC.2011.2156750
      [26]
      N.T. Stetson, S. McWhorter, and C.C. Ahn, Introduction to hydrogen storage, [in] R.B. Gupta, A. Basile, and T.N. Veziroğlu, eds., Compendium of Hydrogen Energy. Volume 2: Hydrogen Storage, Distribution and Infrastructure, Woodhead Publishing, Cambrige, 2016, p. 3.
      [27]
      E.W. Lemmon, M.O. McLinden, and D.G. Friend, Thermophysical properties of fluid systems, [in] P.J. Linstrom and W.G. Mallard, eds., NIST Chemistry Webbook, NIST Standard Reference Database, Vol. 69, National Institute of Standards and Technology, Gaithersburg, MD, 1998.
      [28]
      N. Stetson and M. Wieliczko, Hydrogen technologies for energy storage: A perspective, MRS Energy Sustainability, 7(2020), No. 1, art. No. 41. doi: 10.1557/mre.2020.43
      [29]
      S. McWhorter and G. Ordaz, Onboard Type IV Compressed Hydrogen Storage Systems – Current Performance and Cost, DOE Fuel Cell Technologies Office, 2013 [2021-10-24]. https://www.hydrogen.energy.gov/pdfs/13010_onboard_storage_performance_cost.pdf
      [30]
      NPROXX, Stationary Hydrogen Storage Applications [2021-11-10]. https://www.nproxx.com/hydrogen-storage-transport/stationary-applications/
      [31]
      Hexagon, Hydrogen Storage and Distribution – Lightweight High-Pressure Systems for Hydrogen Storage & Distribution [2021-06-05]. https://hexagongroup.com/solutions/storage-distribution/hydrogen/
      [32]
      Composite Advanced Technologies, LLC, Highway to Hydrogen [2021-12-01]. https://www.catecgases.com/hydrogen
      [33]
      NPROXX, Hydrogen Storage for Filling Stations [2021-11-13]. https://www.nproxx.com/hydrogen-storage-transport/hydrogen-refuelling-stations/
      [34]
      K.L. Simmons, Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks, DOE Hydrogen and Fuel Cells Program, 2014 [2021-10-20]. https://www.hydrogen.energy.gov/pdfs/progress14/iv_f_3_simmons_2014.pdf
      [35]
      A.S. Lord, P.H. Kobos, and D.J. Borns, Geologic storage of hydrogen: Scaling up to meet city transportation demands, Int. J. Hydrogen Energy, 39(2014), No. 28, p. 15570. doi: 10.1016/j.ijhydene.2014.07.121
      [36]
      J. Michalski, U. Bünger, F. Crotogino, S. Donadei, G.S. Schneider, T. Pregger, K.K. Cao, and D. Heide, Hydrogen generation by electrolysis and storage in salt caverns: Potentials, economics and systems aspects with regard to the German energy transition, Int. J. Hydrogen Energy, 42(2017), No. 19, p. 13427. doi: 10.1016/j.ijhydene.2017.02.102
      [37]
      R. K. Ahluwalia, J.K. Peng, H.S. Roh, and D. Papadias, System Analysis of Physical and Materials-Based Hydrogen Storage, DOE Hydrogen and Fuel Cells Program, 2019 [2021-09-10]. https://www.hydrogen.energy.gov/pdfs/progress19/h2f_st001_ahluwalia_2019.pdf
      [38]
      R.R. Ratnakar, N. Gupta, K. Zhang, C. van Doorne, J. Fesmire, B. Dindoruk, and V. Balakotaiah, Hydrogen supply chain and challenges in large-scale LH2 storage and transportation, Int. J. Hydrogen Energy, 46(2021), No. 47, p. 24149. doi: 10.1016/j.ijhydene.2021.05.025
      [39]
      V. Tietze, S. Luhr, and D. Stolten, Bulk storage vessels for compressed and liquid hydrogen, [in] D. Stolten and B. Emonts, eds., Hydrogen Science and Engineering: Materials, Processes, Systems and Technology, Wiley-VCH, Weinheim, 2016, p. 659.
      [40]
      J. Andersson and S. Grönkvist, Large-scale storage of hydrogen, Int. J. Hydrogen Energy, 44(2019), No. 23, p. 11901. doi: 10.1016/j.ijhydene.2019.03.063
      [41]
      G. Valenti, Hydrogen liquefaction and liquid hydrogen storage, [in] Compendium of Hydrogen Energy. Volume 2: Hydrogen Storage, Distribution and Infrastructure, Woodhead Publishing, Cambridge, 2016, p. 27.
      [42]
      A. Züttel, Hydrogen storage methods, Naturwissenschaften, 91(2004), No. 4, p. 157. doi: 10.1007/s00114-004-0516-x
      [43]
      J.B. von Colbe, J.R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D.M. Grant, M.N. Guzik, I. Jacob, E.H. Jensen, T. Jensen, J. Jepsen, T. Klassen, M.V. Lototskyy, K. Manickam, A. Montone, J. Puszkiel, S. Sartori, D.A. Sheppard, A. Stuart, G. Walker, C.J. Webb, H. Yang, V. Yartys, A. Züttel, and M. Dornheim, Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives, Int. J. Hydrogen Energy, 44(2019), No. 15, p. 7780. doi: 10.1016/j.ijhydene.2019.01.104
      [44]
      C. Milanese, T.R. Jensen, B.C. Hauback, C. Pistidda, M. Dornheim, H. Yang, L. Lombardo, A. Zuettel, Y. Filinchuk, P. Ngene, P.E. de Jongh, C.E. Buckley, E.M. Dematteis, and M. Baricco, Complex hydrides for energy storage, Int. J. Hydrogen Energy, 44(2019), No. 15, p. 7860. doi: 10.1016/j.ijhydene.2018.11.208
      [45]
      M. Hirscher, V.A. Yartys, M. Baricco, J.B. von Colbe, D. Blanchard, R.C. Bowman, D.P. Broom, C.E. Buckley, F. Chang, P. Chen, Y.W. Cho, J.C. Crivello, F. Cuevas, W.I.F. David, P.E. de Jongh, R.V. Denys, M. Dornheim, M. Felderhoff, Y. Filinchuk, G.E. Froudakis, D.M. Grant, E.M. Gray, B.C. Hauback, T. He, T.D. Humphries, T.R. Jensen, S. Kim, Y. Kojima, M. Latroche, H.W. Li, M.V. Lototskyy, J.W. Makepeace, K.T. Møller, L. Naheed, P. Ngene, D. Noréus, M.M. Nygård, S.I. Orimo, M. Paskevicius, L. Pasquini, D.B. Ravnsbæk, M.V. Sofianos, T.J. Udovic, T. Vegge, G.S. Walker, C.J. Webb, C. Weidenthaler, and C. Zlotea, Materials for hydrogen-based energy storage – Past, recent progress and future outlook, J. Alloys Compd., 827(2020), art. No. 153548. doi: 10.1016/j.jallcom.2019.153548
      [46]
      Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, and F.S. Pan, Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
      [47]
      T. He, P. Pachfule, H. Wu, Q. Xu, and P. Chen, Hydrogen carriers, Nat. Rev. Mater., 1(2016), No. 12, art. No. 16059. doi: 10.1038/natrevmats.2016.59
      [48]
      A. Bourane, M. Elanany, T.V. Pham, and S.P. Katikaneni, An overview of organic liquid phase hydrogen carriers, Int. J. Hydrogen Energy, 41(2016), No. 48, p. 23075. doi: 10.1016/j.ijhydene.2016.07.167
      [49]
      S. Bradley and W. Wilczewski, Power-to-gas brings a new focus to the issue of energy storage from renewable sources, Today in Energy, 2015 [2021-11-21]. https://www.eia.gov/todayinenergy/detail.php?id=22212#
      [50]
      FIBA Technologies, Superjumbo Tube Trailers, FIBA Technologies, Inc, Littleton [2021-12-09]. https://www.fibatech.com/products/tube-trailers-and-skids/superjumbo-tube-trailers/
      [51]
      P. Schnell, Refueling station layout, [in] D. Stolten and B. Emonts, eds., Hydrogen Science and Engineering: Materials, Processes, Systems and Technology, Wiley-VCH, Weinheim, 2016, p. 891.
      [52]
      R. Gerboni, Introduction to hydrogen transportation, [in] R.B. Gupta, A. Basile, and T.N. Veziroğlu, eds., Compendium of Hydrogen Energy. Volume 2: Hydrogen Storage, Distribution and Infrastructure, Woodhead Publishing, Cambrige, 2016, p. 283.
      [53]
      R.C. Samsun, L. Antoni, M. Rex, and D. Stolten, Deployment Status of Fuel Cells in Road Transport: 2021 Update, Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, Jülich, 2021.
      [54]
      D. Apostolou and G. Xydis, A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects, Renewable Sustainable Energy Rev., 113(2019), art. No. 109292. doi: 10.1016/j.rser.2019.109292
      [55]
      S. Chubbock and R. Clague, Comparative analysis of internal combustion engine and fuel cell range extender, SAE Int. J. Alt. Power., 5(2016), No. 1, p. 175. doi: 10.4271/2016-01-1188
      [56]
      A. Elgowainy and M.Q. Wang, Fuel Cycle Comparison of Distributed Power Generation Technologies, Office of Scientific and Technical Information (OSTI), Oak Ridge, TN, 2008 [2021-11-02]. https://www.osti.gov/biblio/946042-qtnABP/
      [57]
      Y.J. Wang, J.L. Qiao, R. Baker, and J.J. Zhang, Alkaline polymer electrolyte membranes for fuel cell applications, Chem. Soc. Rev., 42(2013), No. 13, p. 5768. doi: 10.1039/c3cs60053j
      [58]
      J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M.A. Hickner, P.A. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, T.W. Xu, and L. Zhuang, Anion-exchange membranes in electrochemical energy systems, Energy Environ. Sci., 7(2014), No. 10, p. 3135. doi: 10.1039/C4EE01303D
      [59]
      Q.F. Li, D. Aili, H.A. Hjuler, and J.O. Jensen, High Temperature Polymer Electrolyte Membrane Fuel Cells: Approaches, Status, and Perspectives, Springer, Cham, 2016.
      [60]
      L.X. Fan, Z.K. Tu, and S.H. Chan, Recent development of hydrogen and fuel cell technologies: A review, Energy Rep., 7(2021), p. 8421. doi: 10.1016/j.egyr.2021.08.003
      [61]
      M. Cassir, A. Meléndez-Ceballos, A. Ringuedé, and V. Lair, Molten carbonate fuel cells, [in] F. Barbir, A. Basile, and T.N. Veziroğlu, eds., Compendium of Hydrogen Energy. Volume 3: Hydrogen Energy Conversion, Woodhead Publishing, Cambridge, 2016, p. 71.
      [62]
      A.S. Mehr, A. Lanzini, M. Santarelli, and M.A. Rosen, Polygeneration systems based on high temperature fuel cell (MCFC and SOFC) technology: System design, fuel types, modeling and analysis approaches, Energy, 228(2021), art. No. 120613. doi: 10.1016/j.energy.2021.120613
      [63]
      M. Singh, D. Zappa, and E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges, Int. J. Hydrogen Energy, 46(2021), No. 54, p. 27643. doi: 10.1016/j.ijhydene.2021.06.020
      [64]
      B.S. Prakash, S.S. Kumar, and S.T. Aruna, Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review, Renewable Sustainable Energy Rev., 36(2014), p. 149. doi: 10.1016/j.rser.2014.04.043
      [65]
      Z. Zakaria, Z. Awang Mat, S.H. Abu Hassan, and Y. Boon Kar, A review of solid oxide fuel cell component fabrication methods toward lowering temperature, Int. J. Energy Res., 44(2020), No. 2, p. 594. doi: 10.1002/er.4907
      [66]
      N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani, Progress in material selection for solid oxide fuel cell technology: A review, Prog. Mater. Sci., 72(2015), p. 141. doi: 10.1016/j.pmatsci.2015.01.001
      [67]
      R.K. Mallick, S.B. Thombre, and N.K. Shrivastava, Vapor feed direct methanol fuel cells (DMFCs): A review, Renewable Sustainable Energy Rev., 56(2016), p. 51. doi: 10.1016/j.rser.2015.11.039
      [68]
      B.G. Pollet, A.A. Franco, H. Su, H. Liang, and S. Pasupathi, Proton exchange membrane fuel cells, [in] F. Barbir, A. Basile, and T.N. Veziroğlu, eds., Compendium of Hydrogen Energy. Volume 3: Hydrogen Energy Conversion, Woodhead Publishing, Cambridge, 2016, p. 3.
      [69]
      L.Y. Zhu, Y.C. Li, J. Liu, J. He, L.Y. Wang, and J.D. Lei, Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications, Pet. Sci., (2021). https://doi.org/10.1016/j.petsci.2021.11.004
      [70]
      D. Van Dao, G. Adilbish, I.H. Lee, and Y.T. Yu, Enhanced electrocatalytic property of Pt/C electrode with double catalyst layers for PEMFC, Int. J. Hydrogen Energy, 44(2019), No. 45, p. 24580. doi: 10.1016/j.ijhydene.2019.07.156
      [71]
      E. Middelman, Improved PEM fuel cell electrodes by controlled self-assembly, Fuel Cells Bull., 2002(2002), No. 11, p. 9. doi: 10.1016/S1464-2859(02)11028-5
      [72]
      J.F. Lin, J. Wertz, R. Ahmad, M. Thommes, and A.M. Kannan, Effect of carbon paper substrate of the gas diffusion layer on the performance of proton exchange membrane fuel cell, Electrochim. Acta, 55(2010), No. 8, p. 2746. doi: 10.1016/j.electacta.2009.12.056
      [73]
      K. Panagi, C.J. Laycock, J.P. Reed, and A.J. Guwy, Highly efficient coproduction of electrical power and synthesis gas from biohythane using solid oxide fuel cell technology, Appl. Energy, 255(2019), art. No. 113854. doi: 10.1016/j.apenergy.2019.113854
      [74]
      M. Choolaei, Q. Cai, R.C.T. Slade, and B. Amini Horri, Nanocrystalline gadolinium-doped ceria (GDC) for SOFCs by an environmentally-friendly single step method, Ceram. Int., 44(2018), No. 11, p. 13286. doi: 10.1016/j.ceramint.2018.04.159
      [75]
      M.Z. Ahmad, S.H. Ahmad, R.S. Chen, A.F. Ismail, R. Hazan, and N.A. Baharuddin, Review on recent advancement in cathode material for lower and intermediate temperature solid oxide fuel cells application, Int. J. Hydrogen Energy, 47(2022), No. 2, p. 1103. doi: 10.1016/j.ijhydene.2021.10.094
      [76]
      C. Xia, Y. Li, Y. Tian, Q.H. Liu, Z.M. Wang, L.J. Jia, Y.C. Zhao, and Y.D. Li, Intermediate temperature fuel cell with a doped ceria–carbonate composite electrolyte, J. Power Sources, 195(2010), No. 10, p. 3149. doi: 10.1016/j.jpowsour.2009.11.104
      [77]
      A. Ahuja, M. Gautam, A. Sinha, J. Sharma, P.K. Patro, and A. Venkatasubramanian, Effect of processing route on the properties of LSCF-based composite cathode for IT-SOFC, Bull. Mater. Sci., 43(2020), No. 1, art. No. 129. doi: 10.1007/s12034-020-2075-y
      [78]
      E.D. Wachsman and K.T. Lee, Lowering the temperature of solid oxide fuel cells, Science, 334(2011), No. 6058, p. 935. doi: 10.1126/science.1204090

    Catalog


    • /

      返回文章
      返回