Cite this article as: |
Fangyuan Ma, Patrick Zhang, and Dongping Tao, Surface nanobubble characterization and its enhancement mechanisms for fine-particle flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 727-738. https://doi.org/10.1007/s12613-022-2450-3 |
陶东平 E-mail: dptao@qq.com
[1] |
Q.Y. Sun, W.Z. Yin, D. Li, Y.F. Fu, J.W. Xue, and J. Yao, Improving the sulfidation−flotation of fine cuprite by hydrophobic flocculation pretreatment, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1256. doi: 10.1007/s12613-018-1678-4
|
[2] |
H.Q. Hao, L.X. Li, P. Somasundaran, and Z.T. Yuan, Adsorption of pregelatinized starch for selective flocculation and flotation of fine siderite, Langmuir, 35(2019), No. 21, p. 6878. doi: 10.1021/acs.langmuir.9b00669
|
[3] |
Z. Wang, N.Y. Liu, and D. Zou, Interface adsorption mechanism of the improved flotation of fine pyrite by hydrophobic flocculation, Sep. Purif. Technol., 275(2021), art. No. 119245. doi: 10.1016/j.seppur.2021.119245
|
[4] |
A.R.S.d. Medeiros and C.A.M. Baltar, Importance of collector chain length in flotation of fine particles, Miner. Eng., 122(2018), p. 179. doi: 10.1016/j.mineng.2018.03.008
|
[5] |
C. Yang, X.Y. Liu, W.H. Gao, Z.H. Zhang, H.Q. Wang, X.J. Lyu, J. Qiu, X.N. Zhu, and L. Li, Clean flotation of fine coal assisted by renewable collector prepared from waste oils, Energy Sources A, (2020). DOI: 10.1080/15567036.2020.1806406
|
[6] |
X.N. Zhu, D.Z. Wang, Y. Ni, J.X. Wang, C.C. Nie, C. Yang, X.J. Lyu, J. Qiu, and L. Li, Cleaner approach to fine coal flotation by renewable collectors prepared by waste oil transesterification, J. Clean. Prod., 252(2020), art. No. 119822. doi: 10.1016/j.jclepro.2019.119822
|
[7] |
A. Sobhy and D. Tao, High-efficiency nanobubble coal flotation, Int. J. Coal Prep. Util., 33(2013), No. 5, p. 242. doi: 10.1080/19392699.2013.810623
|
[8] |
C.W. Li, M. Xu, Y.W. Xing, H.J. Zhang, and U.A. Peuker, Efficient separation of fine coal assisted by surface nanobubbles, Sep. Purif. Technol., 249(2020), art. No. 117163. doi: 10.1016/j.seppur.2020.117163
|
[9] |
F.Y. Ma, D.P. Tao, Y.J. Tao, and S.Y. Liu, An innovative flake graphite upgrading process based on HPGR, stirred grinding mill, and nanobubble column flotation, Int. J. Min. Sci. Technol., 31(2021), No. 6, p. 1063. doi: 10.1016/j.ijmst.2021.06.005
|
[10] |
D.P. Tao, Z.X. Wu, and A. Sobhy, Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms, Powder Technol., 379(2021), p. 12. doi: 10.1016/j.powtec.2020.10.040
|
[11] |
A. Sobhy and D. Tao, Nanobubble column flotation of fine coal particles and associated fundamentals, Int. J. Miner. Process., 124(2013), p. 109. doi: 10.1016/j.minpro.2013.04.016
|
[12] |
R. Ahmadi, D.A. Khodadadi, M. Abdollahy, and M. Fan, Nano-microbubble flotation of fine and ultrafine chalcopyrite particles, Int. J. Min. Sci. Technol., 24(2014), No. 4, p. 559-566. doi: 10.1016/j.ijmst.2014.05.021
|
[13] |
W.G. Zhou, L.M. Ou, Q. Shi, Q.M. Feng and H. Chen, Different flotation performance of ultrafine scheelite under two hydrodynamic cavitation modes, Minerals, 8(2018), No. 7, p. 264. doi: 10.3390/min8070264
|
[14] |
C.W. Li and H.J. Zhang, Surface nanobubbles and their roles in flotation of fine particles—A review, J. Ind. Eng. Chem., 106(2022), p. 37. doi: 10.1016/j.jiec.2021.11.009
|
[15] |
J.G. Lee and R.W. Flumerfelt, A refined approach to bubble nucleation and polymer foaming process: Dissolved gas and cluster size effects, J. Colloid Interface Sci., 184(1996), No. 2, p. 335. doi: 10.1006/jcis.1996.0628
|
[16] |
J.C. Eriksson and S. Ljunggren, On the mechanically unstable free energy minimum of a gas bubble which is submerged in water and adheres to a hydrophobic wall, Colloids Surf. A, 159(1999), No. 1, p. 159. doi: 10.1016/S0927-7757(99)00171-5
|
[17] |
D.E. Yount and T.D. Kunkle, Gas nucleation in the vicinity of solid hydrophobic spheres, J. Appl. Phys., 46(1975), No. 10, p. 4484. doi: 10.1063/1.321381
|
[18] |
X.Y. Zhang, Q.S. Wang, Z.X. Wu, and D.P. Tao, An experimental study on size distribution and zeta potential of bulk cavitation nanobubbles, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 152. doi: 10.1007/s12613-019-1936-0
|
[19] |
M.M. Fan, D. Tao, R. Honaker, and Z.F. Luo, Nanobubble generation and its application in froth flotation (part I): Nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions, Min. Sci. Technol., 20(2010), No. 1, p. 1. doi: 10.1016/S1674-5264(09)60154-X
|
[20] |
F.Y. Ma, D.P. Tao, and Y.J. Tao, Effects of nanobubbles in column flotation of Chinese sub-bituminous coal, Int. J. Coal Prep. Util., 2019. DOI: 10.1080/19392699.2019.1692340
|
[21] |
R. Etchepare, H. Oliveira, M. Nicknig, A. Azevedo, and J. Rubio, Nanobubbles: Generation using a multiphase pump, properties and features in flotation, Miner. Eng., 112(2017), p. 19. doi: 10.1016/j.mineng.2017.06.020
|
[22] |
H. Oliveira, A. Azevedo, and J. Rubio, Nanobubbles generation in a high-rate hydrodynamic cavitation tube, Miner. Eng., 116(2018), p. 32. doi: 10.1016/j.mineng.2017.10.020
|
[23] |
A.F. Rosa and J. Rubio, On the role of nanobubbles in particle-bubble adhesion for the flotation of quartz and apatitic minerals, Miner. Eng., 127(2018), p. 178. doi: 10.1016/j.mineng.2018.08.020
|
[24] |
C.W. Li, X. Li, M. Xu, and H.J. Zhang, Effect of ultrasonication on the flotation of fine graphite particles: Nanobubbles or not? Ultrason. Sonochem., 69(2020), art. No. 105243.
|
[25] |
F.F. Zhang, L.J. Sun, H.C. Yang, X.H. Gui, H. Schönherr, M. Kappl, Y.J. Cao, and Y.W. Xing, Recent advances for understanding the role of nanobubbles in particles flotation, Adv. Colloid Interface Sci., 291(2021), art. No. 102403. doi: 10.1016/j.cis.2021.102403
|
[26] |
N. Chen, Z.W. Wen, X.F. Li, Z.X. Ye, D.F. Ren, J.Q. Xu, Q.M. Chen, and S.Y. Ma, Controllable preparation and formation mechanism of monodispersed bulk nanobubbles in dilute ethanol-water solutions, Colloids Surf. A, 616(2021), art. No. 126372. doi: 10.1016/j.colsurfa.2021.126372
|
[27] |
S.T. Lou, J.X. Gao, X.D. Xiao, X.J. Li, G.L. Li, Y. Zhang, M. Li, J.L. Sun, X.H. Li, and J. Hu, Studies of nanobubbles produced at liquid/solid interfaces, Mater. Charact., 48(2002), No. 2-3, p. 211. doi: 10.1016/S1044-5803(02)00241-3
|
[28] |
R. Hao, Y.S. Fan, M.D. Howard, J.C. Vaughan, and B. Zhang, Imaging nanobubble nucleation and hydrogen spillover during electrocatalytic water splitting, PNAS, 115(2018), No. 23, p. 5878. doi: 10.1073/pnas.1800945115
|
[29] |
M.M. Zhang, J.R.T. Seddon, and S.G, Lemay, Nanoparticle–nanobubble interactions: Charge inversion and re-entrant condensation of amidine latex nanoparticles driven by bulk nanobubbles, J. Colloid Interface Sci., 538(2019), p. 605. doi: 10.1016/j.jcis.2018.11.110
|
[30] |
K. Kikuchi, S. Nagata, Y. Tanaka, Y. Saihara, and Z. Ogumi, Characteristics of hydrogen nanobubbles in solutions obtained with water electrolysis, J. Electroanal. Chem., 600(2007), No. 2, p. 303. doi: 10.1016/j.jelechem.2006.10.005
|
[31] |
F.F. Zhang, Y.W. Xing, L.J. Sun, M. Liu, X.H. Gui, and Y.J. Cao, Characteristics of interfacial nanobubbles and their interaction with solid surfaces, Appl. Surf. Sci., 550(2021), art. No. 149258. doi: 10.1016/j.apsusc.2021.149258
|
[32] |
S.J. Yang, S.M. Dammer, N. Bremond, H.J.W. Zandvliet, E.S. Kooij, and D. Lohse, Characterization of nanobubbles on hydrophobic surfaces in water, Langmuir, 23(2007), No. 13, p. 7072. doi: 10.1021/la070004i
|
[33] |
L.M. Zhou, S. Wang, J. Qiu, L. Wang, X.Y. Wang, B. Li, L.J. Zhang, and J. Hu, Interfacial nanobubbles produced by long-time preserved cold water, Chin. Phys. B, 26(2017), No. 10, art. No. 106803. doi: 10.1088/1674-1056/26/10/106803
|
[34] |
C.L. Xu, S.H. Peng, G.G. Qiao, V. Gutowski, D. Lohse, and X.H. Zhang, Nanobubble formation on a warmer substrate, Soft Matter, 10(2014), No. 39, p. 7857. doi: 10.1039/C4SM01025F
|
[35] |
A. Azevedo, R. Etchepare, S. Calgaroto, and J. Rubio, Aqueous dispersions of nanobubbles: Generation, properties and features, Miner. Eng., 94(2016), p. 29. doi: 10.1016/j.mineng.2016.05.001
|
[36] |
G. Ferraro, A.J. Jadhav, and M. Barigou, A Henry’s law method for generating bulk nanobubbles, Nanoscale, 12(2020), No. 29, p. 15869. doi: 10.1039/D0NR03332D
|
[37] |
R. Etchepare, A. Azevedo, S. Calgaroto, and J. Rubio, Removal of ferric hydroxide by flotation with micro and nanobubbles, Sep. Purif. Technol., 184(2017), p. 347. doi: 10.1016/j.seppur.2017.05.014
|
[38] |
N. Hain, S. Handschuh-Wang, D. Wesner, S.I. Druzhinin, and H. Schönherr, Multimodal microscopy-based identification of surface nanobubbles, J. Colloid Interface Sci., 547(2019), p. 162. doi: 10.1016/j.jcis.2019.03.084
|
[39] |
H.S. Liao, C.W. Yang, H.C. Ko, E.T. Hwu, and I.S. Hwang, Imaging initial formation processes of nanobubbles at the graphite-water interface through high-speed atomic force microscopy, Appl. Surf. Sci., 434(2018), p. 913. doi: 10.1016/j.apsusc.2017.11.044
|
[40] |
W. Guo, H. Shan, M. Guan, L.H. Gao, M.H. Liu, and Y.M. Dong, Investigation on nanobubbles on graphite substrate produced by the water-NaCl solution replacement, Surf. Sci., 606(2012), No. 17-18, p. 1462. doi: 10.1016/j.susc.2012.05.018
|
[41] |
F.F. Zhang, Y.W. Xing, G.H. Chang, Z.L. Yang, Y.J. Cao, and X.H. Gui, Enhanced lignite flotation using interfacial nanobubbles based on temperature difference method, Fuel, 293(2021), art. No. 120313. doi: 10.1016/j.fuel.2021.120313
|
[42] |
N. Ishida, T. Inoue, M. Miyahara, and K. Higashitani, Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy, Langmuir, 16(2000), No. 16, p. 6377. doi: 10.1021/la000219r
|
[43] |
L.M. Zhou, X.Y. Wang, S. Hyun-Joon, L.J. Zhang, and J. Hu, Surface nanobubbles produced by cold water investigated using scanning transmission X-ray microscopy, Microsc. Microanal., 24(2018), No. S2, p. 470. doi: 10.1017/S1431927618014587
|
[44] |
C.L. Owens, E. Schach, T. Heinig, M. Rudolph, and G.R. Nash, Surface nanobubbles on the rare earth fluorcarbonate mineral synchysite, J. Colloid Interface Sci., 552(2019), p. 66. doi: 10.1016/j.jcis.2019.05.014
|
[45] |
L.J. Zhang, Y. Zhang, X.H. Zhang, Z.X. Li, G.X. Shen, M. Ye, C.H. Fan, H.P. Fang, and J. Hu, Electrochemically controlled formation and growth of hydrogen nanobubbles, Langmuir, 22(2006), No. 19, p. 8109. doi: 10.1021/la060859f
|
[46] |
Q.J. Chen, L. Luo, and H.S. White, Electrochemical generation of a hydrogen bubble at a recessed platinum nanopore electrode, Langmuir, 31(2015), No. 15, p. 4573. doi: 10.1021/acs.langmuir.5b00234
|
[47] |
Q.J. Chen, L. Luo, H. Faraji, S.W. Feldberg, and H.S. White, Electrochemical measurements of single H2 nanobubble nucleation and stability at Pt nanoelectrodes, J. Phys. Chem. Lett., 5(2014), No. 20, p. 3539. doi: 10.1021/jz501898r
|
[48] |
X.H. Zhang, D.Y.C. Chan, D.Y. Wang, and N. Maeda, Stability of interfacial nanobubbles, Langmuir, 29(2013), No. 4, p. 1017. doi: 10.1021/la303837c
|
[49] |
S. Calgaroto, K.Q. Wilberg, and J. Rubio, On the nanobubbles interfacial properties and future applications in flotation, Miner. Eng., 60(2014), p. 33. doi: 10.1016/j.mineng.2014.02.002
|
[50] |
W. Xiao, X.X. Wang, L.M. Zhou, W.G. Zhou, J. Wang, W.Q. Qin, G.Z. Qiu, J. Hu, and L.J. Zhang, Influence of mixing and nanosolids on the formation of nanobubbles, J. Phys. Chem. B, 123(2019), No. 1, p. 317. doi: 10.1021/acs.jpcb.8b11385
|
[51] |
W. Walczyk and H. Schönherr, Closer look at the effect of AFM imaging conditions on the apparent dimensions of surface nanobubbles, Langmuir, 29(2013), No. 2, p. 620. doi: 10.1021/la304193d
|
[52] |
D.Y. Li, D.L. Jing, Y.L. Pan, W.J. Wang, and X.Z. Zhao, Coalescence and stability analysis of surface nanobubbles on the polystyrene/water interface, Langmuir, 30(2014), No. 21, p. 6079. doi: 10.1021/la501262a
|
[53] |
J.R.T. Seddon, H.J.W. Zandvliet, and D. Lohse, Knudsen gas provides nanobubble stability, Phys. Rev. Lett., 107(2011), No. 11, art. No. 116101. doi: 10.1103/PhysRevLett.107.116101
|
[54] |
G.X. Shen, X.H. Zhang, Y. Ming, L.J. Zhang, Y. Zhang, and J. Hu, Photocatalytic induction of nanobubbles on TiO2 surfaces, J. Phys. Chem. C, 112(2008), No. 11, p. 4029. doi: 10.1021/jp711850d
|
[55] |
X.Y. Wang, B.Y. Zhao, W.G. Ma, Y. Wang, X.Y. Gao, R.Z. Tai, X.F. Zhou, and L.J. Zhang, Interfacial nanobubbles on atomically flat substrates with different hydrophobicities, ChemPhysChem, 16(2015), No. 5, p. 1003. doi: 10.1002/cphc.201402854
|
[56] |
L.J. Zhang, H.P. Fang, and J. Hu, Scientific mysteries of nanobubbles, Physics, 47(2018), No. 9, p. 574.
|
[57] |
D.J. Johnson, S.A.A. Malek, B.A.M. Al-Rashdi, and N. Hilal, Atomic force microscopy of nanofiltration membranes: Effect of imaging mode and environment, J. Membr. Sci., 389(2012), p. 486. doi: 10.1016/j.memsci.2011.11.023
|
[58] |
L.J. Zhang, X.H. Zhang, Y. Zhang, J. Hu, and H.P. Fang, The length scales for stable gas nanobubbles at liquid/solid surfaces, Soft Matter, 6(2010), No. 18, art. No. 4515. doi: 10.1039/c0sm00243g
|
[59] |
H. Schönherr, N. Hain, W. Walczyk, D. Wesner, and S.I. Druzhinin, Surface nanobubbles studied by atomic force microscopy techniques: Facts, fiction, and open questions, Jpn. J. Appl. Phys., 55(2016), No. 8S1, art. No. 08NA01. doi: 10.7567/JJAP.55.08NA01
|
[60] |
B.M. Borkent, S.d. Beer, F. Mugele, and D. Lohse, On the shape of surface nanobubbles, Langmuir, 26(2010), No. 1, p. 260. doi: 10.1021/la902121x
|
[61] |
V.S.J. Craig, Very small bubbles at surfaces—The nanobubble puzzle, Soft Matter, 7(2011), No. 1, p. 40. doi: 10.1039/C0SM00558D
|
[62] |
C.R. Mo, Research on the Generation Method and Properties of Nanobubble Based on Ultrasonic Cavitation [Dissertation], University of Chinese Academy of Sciences, Beijing, 2019, p. 3.
|
[63] |
B. Song, W. Walczyk, and H. Schönherr, Contact angles of surface nanobubbles on mixed self-assembled monolayers with systematically varied macroscopic wettability by atomic force microscopy, Langmuir, 27(2011), No. 13, p. 8223. doi: 10.1021/la2014896
|
[64] |
W.G. Zhou, C.N. Wu, H.Z. Lv, B.L. Zhao, K. Liu, and L.M. Ou, Nanobubbles heterogeneous nucleation induced by temperature rise and its influence on minerals flotation, Appl. Surf. Sci., 508(2020), art. No. 145282. doi: 10.1016/j.apsusc.2020.145282
|
[65] |
S. Nazari, S.Z. Shafaei, B. Shahbazi, and S.C. Chelgani, Study relationships between flotation variables and recovery of coarse particles in the absence and presence of nanobubble, Colloids Surf. A, 559(2018), p. 284. doi: 10.1016/j.colsurfa.2018.09.066
|
[66] |
D.P. Tao and A. Sobhy, Nanobubble effects on hydrodynamic interactions between particles and bubbles, Powder Technol., 346(2019), p. 385. doi: 10.1016/j.powtec.2019.02.024
|
[67] |
J.W. Yang, J.M. Duan, D. Fornasiero, and J. Ralston, Very small bubble formation at the solid−water interface, J. Phys. Chem. B, 107(2003), No. 25, p. 6139. doi: 10.1021/jp0224113
|
[68] |
S. Calgaroto, A. Azevedo, and J. Rubio, Flotation of quartz particles assisted by nanobubbles, Int. J. Miner. Process., 137(2015), p. 64. doi: 10.1016/j.minpro.2015.02.010
|
[69] |
S.H. Ding, Y.W. Xing, X. Zheng, Y.F. Zhang, Y.J. Cao, and X.H. Gui, New insights into the role of surface nanobubbles in bubble-particle detachment, Langmuir, 36(2020), No. 16, p. 4339. doi: 10.1021/acs.langmuir.0c00359
|
[70] |
K.W. Stöckelhuber, B. Radoev, A. Wenger, and H.J. Schulze, Rupture of wetting films caused by nanobubbles, Langmuir, 20(2004), No. 1, p. 164. doi: 10.1021/la0354887
|
[71] |
M.A. Hampton and A.V. Nguyen, Systematically altering the hydrophobic nanobubble bridging capillary force from attractive to repulsive, J. Colloid Interface Sci., 333(2009), No. 2, p. 800. doi: 10.1016/j.jcis.2009.01.035
|
[72] |
A.C. Simonsen, P.L. Hansen, and B. Klösgen, Nanobubbles give evidence of incomplete wetting at a hydrophobic interface, J. Colloid Interface Sci., 273(2004), No. 1, p. 291. doi: 10.1016/j.jcis.2003.12.035
|
[73] |
Y. Lu, Drag reduction by nanobubble clusters as affected by surface wettability and flow velocity: Molecular dynamics simulation, Tribol. Int., 137(2019), p. 267. doi: 10.1016/j.triboint.2019.05.010
|
[74] |
M.A. Hampton and A.V. Nguyen, Nanobubbles and the nanobubble bridging capillary force, Adv. Colloid Interface Sci., 154(2010), No. 1-2, p. 30. doi: 10.1016/j.cis.2010.01.006
|
[75] |
K. Yasui, T. Tuziuti, N. Izu, and W. Kanematsu, Is surface tension reduced by nanobubbles (ultrafine bubbles) generated by cavitation, Ultrason. Sonochem., 52(2019), p. 13. doi: 10.1016/j.ultsonch.2018.11.020
|
[76] |
Z.A. Zhou, Z.H. Xu, J. A. Finch, J. H. Masliyah, and R. S, Chow, On the role of cavitation in particle collection in flotation—A critical review II, Miner. Eng., 22(2009), No. 5, p. 419. doi: 10.1016/j.mineng.2008.12.010
|
[77] |
J. Israelachvili, and R. Pashley, The hydrophobic interaction is long range, decaying exponentially with distance, Nature., 300(1982), No. 5890, p. 341. doi: 10.1038/300341a0
|
[78] |
J.L. Parker, P.M. Claesson, and P. Attard, Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces, J. Phys. Chem., 98(1994), No. 34, p. 8468. doi: 10.1021/j100085a029
|
[79] |
S. Ljunggren and J.C. Eriksson, The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction, Colloids Surf. A, 129-130(1997), p. 151. doi: 10.1016/S0927-7757(97)00033-2
|
[80] |
W.G. Zhou, H. Chen, L.M. Ou, and Q. Shi, Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation, Int. J. Miner. Process., 157(2016), p. 236. doi: 10.1016/j.minpro.2016.11.003
|
[81] |
P. Knüpfer, L. Ditscherlein, and U.A. Peuker, Nanobubble enhanced agglomeration of hydrophobic powders, Colloids Surf. A, 530(2017), p. 117. doi: 10.1016/j.colsurfa.2017.07.056
|
[82] |
Y.W. Xing, Y.F. Zhang, M. Liu, M.D. Xu, F.Y. Guo, H.S. Han, Z.Y. Gao, Y.J. Cao, and X.H. Gui, Improving the floatability of coal with varying surface roughness through hypobaric treatment, Powder Technol., 345(2019), p. 643. doi: 10.1016/j.powtec.2019.01.058
|
[83] |
V. Chipakwe, A. Sand, and S.C. Chelgani, Nanobubble assisted flotation separation of complex Pb–Cu–Zn sulfide ore—Assessment of process readiness, Sep. Sci. Technol., 2021. DOI: 10.1080/01496395.2021.1981942
|
[84] |
V. Chipakwe, R. Jolsterå, and S.C. Chelgani, Nanobubble-assisted flotation of apatite tailings: Insights on beneficiation options, ACS Omega, 6(2021), No. 21, p. 13888. doi: 10.1021/acsomega.1c01551
|
[85] |
S. Nazari, S.Z. Shafaei, M. Gharabaghi, R. Ahmadi, B. Shahbazi, and M.M. Fan, Effects of nanobubble and hydrodynamic parameters on coarse quartz flotation, Int. J. Min. Sci. Technol., 29(2019), No. 2, p. 289. doi: 10.1016/j.ijmst.2018.08.011
|
[86] |
P.S. Epstein and M.S. Plesset, On the stability of gas bubbles in liquid–gas solutions, J. Chem. Phys., 18(1950), No. 11, p. 1505. doi: 10.1063/1.1747520
|
[87] |
P.E. Theodorakis and Z.Z. Che, Surface nanobubbles: Theory, simulation, and experiment. A review, Adv. Colloid Interface Sci., 272(2019), art. No. 101995. doi: 10.1016/j.cis.2019.101995
|
[88] |
W.A. Ducker, Contact angle and stability of interfacial nanobubbles, Langmuir, 25(2009), No. 16, p. 8907. doi: 10.1021/la902011v
|
[89] |
H. Peng, G.R. Birkett, and A.V. Nguyen, Progress on the surface nanobubble story: What is in the bubble? Why does it exist? Adv. Colloid Interface Sci., 222(2015), p. 573.
|
[90] |
N.D. Petsev, M.S. Shell, and L.G. Leal, Dynamic equilibrium explanation for nanobubbles’ unusual temperature and saturation dependence, Phys. Rev. E, 88(2013), No. 1, art. No. 010402. doi: 10.1103/PhysRevE.88.010402
|
[91] |
H. Peng, G.R. Birkett, and A.V. Nguyen, Origin of interfacial nanoscopic gaseous domains and formation of dense gas layer at hydrophobic solid–water interface, Langmuir, 29(2013), No. 49, p. 15266. doi: 10.1021/la403187p
|
[92] |
Y.W. Liu, J.J. Wang, X.R. Zhang, and W.C. Wang, Contact line pinning and the relationship between nanobubbles and substrates, J. Chem. Phys., 140(2014), No. 5, art. No. 054705. doi: 10.1063/1.4863448
|
[93] |
A. Brotchie and X.H. Zhang, Response of interfacial nanobubbles to ultrasound irradiation, Soft Matter, 7(2011), No. 1, p. 265. doi: 10.1039/C0SM00731E
|
[94] |
Y. Takata, H. Matsubara, T. Matsuda, Y. Kikuchi, T. Takiue, B. Law, and M. Aratono, Study on line tension of air/hexadecane/aqueous surfactant system, Colloid Polym. Sci., 286(2008), No. 6-7, p. 647. doi: 10.1007/s00396-007-1806-6
|
[95] |
N. Kameda and S. Nakabayashi, Size-induced sign inversion of line tension in nanobubbles at a solid/liquid interface, Chem. Phys. Lett., 461(2008), No. 1-3, p. 122. doi: 10.1016/j.cplett.2008.07.012
|
[96] |
S.I. Koshoridze, Calculating line tension for a simple model of a surface nanobubble, Tech. Phys. Lett., 46(2020), No. 5, p. 416. doi: 10.1134/S1063785020050089
|
[97] |
J.H. Weijs, J.H. Snoeijer, and D. Lohse, Formation of surface nanobubbles and the universality of their contact angles: A molecular dynamics approach, Phys. Rev. Lett., 108(2012), No. 10, p. 104501. doi: 10.1103/PhysRevLett.108.104501
|