留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 5
Apr.  2022

图(6)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1974
  • HTML全文浏览量:  334
  • PDF下载量:  87
  • 被引次数: 0
Yue Liu, Shaobo Huang, Shanlong Peng, Heng Zhang, Lifan Wang, and Xindong Wang, Novel Au nanoparticles-inlaid titanium paper for PEM water electrolysis with enhanced interfacial electrical conductivity, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1090-1098. https://doi.org/10.1007/s12613-022-2452-1
Cite this article as:
Yue Liu, Shaobo Huang, Shanlong Peng, Heng Zhang, Lifan Wang, and Xindong Wang, Novel Au nanoparticles-inlaid titanium paper for PEM water electrolysis with enhanced interfacial electrical conductivity, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1090-1098. https://doi.org/10.1007/s12613-022-2452-1
引用本文 PDF XML SpringerLink
研究论文

PEM纯水电解制氢中镶金纳米粒子钛纸扩散层的高导电性研究

  • 通讯作者:

    王立帆    E-mail: wanglifanustb@163.com

    王新东    E-mail: echem@ustb.edu.cn

文章亮点

  • (1)采用聚多巴胺(PDA)原位还原工艺在钛纸扩散层表面制备了一种亲水、耐蚀的导电复合涂层。
  • (2) 研究了PDA薄膜的沉积时间和氯金酸的浓度对金纳米颗粒微观形貌的影响规律。
  • (3)模拟质子交换膜水电解池环境Au-PDA@Ti涂层具有优异的导电性和耐蚀性能。
  • 质子交换膜水电解(PEM WE)技术具有制取氢气纯度高、可控范围大、工作响应快等优点,可充分适用于风能、太阳能等可再生能源的间歇性特点,在未来的制氢行业有广泛的应用前景。目前,钛具有优异的稳定性使其成为一种先进的结构材料,用于PEM水电解槽中的阳极扩散层组件。然而,钛钝化层的存在也对表面接触电阻有负面影响,因为钝化层本身是非/半导体,过度的钝化程度会导致PEM WE运行过程中较高的表面接触电阻和能量损失。因此,改善钛基扩散层的导电性和界面稳定性是一个紧迫的问题。在这项工作中,我们采用聚多巴胺(PDA)原位还原工艺在钛纸扩散层表面制备了一种亲水、耐蚀的导电复合涂层。研究了PDA薄膜在钛纸表面的沉积时间、还原金纳米颗粒的浓度、微观形貌、组成,以及在模拟PEM水电解环境下涂层的耐蚀性、稳定性和导电性。结果表明,通过调控聚多巴胺薄膜的沉积时间和氯金酸的浓度,在钛纸面膜原位沉积金纳米颗粒的最佳反应条件为沉积PDA时间为48 h,氯金酸pH为3。涂层样品界面接触电阻可达0.5 mΩ·cm2,在一定程度上降低电解槽的欧姆损耗。在质子交换膜电解水阳极酸性介质富氧高极化电位下(1.7 V vs. RHE),腐蚀电流密度为0.001 µA·cm−2。这些优异的性能与其表面结构有关: 钛纸表面亲水性的PDA薄膜,确保了混合涂层中既不存在微孔也不存在针孔,提高了耐蚀性;金纳米粒子改善了导电性,以达到理想的界面接触电阻,并进一步增强了耐腐蚀性。由于该方法操作简单,在提高PEM WE工艺效率方面具有巨大的潜力。
  • Research Article

    Novel Au nanoparticles-inlaid titanium paper for PEM water electrolysis with enhanced interfacial electrical conductivity

    + Author Affiliations
    • Proton-exchange membrane water electrolysis (PEM WE) is a particularly promising technology for renewable hydrogen production. However, the excessive passivation of the gas diffusion layer (GDL) will seriously affect the high surface-contact resistance and result in energy losses. Thus, a mechanism for improving the conductivity and interface stability of the GDL is an urgent issue. In this work, we have prepared a hydrophilic and corrosion resistant conductive composite protective coating. The polydopamine (PDA) film on the Ti surface, which was obtained via the solution oxidation method, ensured that neither micropores nor pinholes existed in the final hybrid coatings. In-situ reduced gold nanoparticles (AuNPs) improved the conductivity to achieve the desired interfacial contact resistance and further enhanced the corrosion resistance. The surface composition of the treated samples was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated that the optimized reaction conditions included a pH value of 3 of HAuCl4 solution with PDA deposition (48 h) on papers and revealed the lowest contact resistance (0.5 mΩ·cm2) and corrosion resistance (0.001 µA·cm−2) in a 0.5 M H2SO4 + 2 ppm F solution (1.7 V vs. RHE) among all the modified specimens, where RHE represents reversible hydrogen electrode. These findings indicated that the Au–PDA coating is very appropriate for the modification of Ti GDLs in PEM WE systems.
    • loading
    • Supplementary Information12613-022-2452-1-z.docx
    • [1]
      C. Liu, M. Shviro, A.S. Gago, et al., Exploring the interface of skin-layered titanium fibers for electrochemical water splitting, Adv. Energy Mater., 11(2021), No. 8, art. No. 2002926. doi: 10.1002/aenm.202002926
      [2]
      M. Carmo, D.L. Fritz, J. Mergel, and D. Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy, 38(2013), No. 12, p. 4901. doi: 10.1016/j.ijhydene.2013.01.151
      [3]
      C. Niether, S. Faure, A. Bordet, et al., Improved water electrolysis using magnetic heating of FeC–Ni core-shell nanoparticles, Nat. Energy, 3(2018), No. 6, p. 476. doi: 10.1038/s41560-018-0132-1
      [4]
      A. Landman, H. Dotan, G.E. Shter, et al., Photoelectrochemical water splitting in separate oxygen and hydrogen cells, Nat. Mater., 16(2017), No. 6, p. 646. doi: 10.1038/nmat4876
      [5]
      F. Barbir, PEM electrolysis for production of hydrogen from renewable energy sources, Sol. Energy, 78(2005), No. 5, p. 661. doi: 10.1016/j.solener.2004.09.003
      [6]
      H. Ito, T. Maeda, A. Nakano, A. Kato, and T. Yoshida, Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer, Electrochim. Acta, 100(2013), p. 242. doi: 10.1016/j.electacta.2012.05.068
      [7]
      F. Arbabi, A. Kalantarian, R. Abouatallah, R. Wang, J.S. Wallace, and A. Bazylak, Feasibility study of using microfluidic platforms for visualizing bubble flows in electrolyzer gas diffusion layers, J. Power Sources, 258(2014), p. 142. doi: 10.1016/j.jpowsour.2014.02.042
      [8]
      S. Siracusano, A. Di Blasi, V. Baglio, et al., Optimization of components and assembling in a PEM electrolyzer stack, Int. J. Hydrogen Energy, 36(2011), No. 5, p. 3333. doi: 10.1016/j.ijhydene.2010.12.044
      [9]
      N. Sato, An overview on the passivity of metals, Corros. Sci., 31(1990), p. 1. doi: 10.1016/0010-938X(90)90086-K
      [10]
      H.Y. Jung, S.Y. Huang, P. Ganesan, and B.N. Popov, Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation, J. Power Sources, 194(2009), No. 2, p. 972. doi: 10.1016/j.jpowsour.2009.06.030
      [11]
      S.H. Wang, J. Peng, and W.B. Lui, Surface modification and development of titanium bipolar plates for PEM fuel cells, J. Power Sources, 160(2006), No. 1, p. 485. doi: 10.1016/j.jpowsour.2006.01.020
      [12]
      M.J. Hwang, E.J. Park, W.J. Moon, H.J. Song, and Y.J. Park, Characterization of passive layers formed on Ti–10wt% (Ag, Au, Pd, or Pt) binary alloys and their effects on galvanic corrosion, Corros. Sci., 96(2015), p. 152. doi: 10.1016/j.corsci.2015.04.007
      [13]
      Z.X. He, Y.R. Lv, T.A. Zhang, et al., Electrode materials for vanadium redox flow batteries: Intrinsic treatment and introducing catalyst, Chem. Eng. J., 427(2022), art. No. 131680. doi: 10.1016/j.cej.2021.131680
      [14]
      S.H. Wang, W.B. Lui, J. Peng, and J.S. Zhang, Performance of the iridium oxide (IrO2)-modified titanium bipolar plates for the light weight proton exchange membrane fuel cells, J. Fuel Cell Sci. Technol., 10(2013), No. 4, art. No. 041002. doi: 10.1115/1.4024565
      [15]
      H. Wakayama and K. Yamazaki, Low-cost bipolar plates of Ti4O7-coated Ti for water electrolysis with polymer electrolyte membranes, ACS Omega, 6(2021), No. 6, p. 4161. doi: 10.1021/acsomega.0c04786
      [16]
      Y.Z. Chen, D.J. Jiang, Z.Q. Gong, J.Y. Li, and L.N. Wang, Anodized metal oxide nanostructures for photoelectrochemical water splitting, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 584. doi: 10.1007/s12613-020-1983-6
      [17]
      T.J. Toops, M.P. Brady, F.Y. Zhang, et al., Evaluation of nitrided titanium separator plates for proton exchange membrane electrolyzer cells, J. Power Sources, 272(2014), p. 954. doi: 10.1016/j.jpowsour.2014.09.016
      [18]
      J. Bi, J.M. Yang, X.X. Liu, et al., Development and evaluation of nitride coated titanium bipolar plates for PEM fuel cells, Int. J. Hydrogen Energy, 46(2021), No. 1, p. 1144. doi: 10.1016/j.ijhydene.2020.09.217
      [19]
      K. Feng, D.T.K. Kwok, D.A. Liu, Z.G. Li, X. Cai, and P.K. Chu, Nitrogen plasma-implanted titanium as bipolar plates in polymer electrolyte membrane fuel cells, J. Power Sources, 195(2010), No. 19, p. 6798. doi: 10.1016/j.jpowsour.2010.04.053
      [20]
      A. Shenhar, I. Gotman, E.Y. Gutmanas, and P. Ducheyne, Surface modification of titanium alloy orthopaedic implants via novel powder immersion reaction assisted coating nitriding method, Mater. Sci. Eng. A, 268(1999), No. 1-2, p. 40. doi: 10.1016/S0921-5093(99)00111-2
      [21]
      X. Zhang, W.W. Yang, M.Y. Gao, H. Liu, K.F. Li, and Y.S. Yu, Room-temperature solid phase surface engineering of BiOI sheets stacking g-C3N4 boosts photocatalytic reduction of Cr(VI), Green Energy Environ., 7(2022), No. 1, p. 66. doi: 10.1016/j.gee.2020.07.024
      [22]
      E. Petkucheva, G. Borisov, E. Lefterova, J. Heiss, U. Schnakenberg, and E. Slavcheva, Gold-supported magnetron sputtered Ir thin films as OER catalysts for cost-efficient water electrolysis, Int. J. Hydrogen Energy, 43(2018), No. 35, p. 16905. doi: 10.1016/j.ijhydene.2018.01.188
      [23]
      M. Stern and H. Wissenberg, The influence of noble metal alloy additions on the electrochemical and corrosion behavior of titanium, J. Electrochem. Soc., 106(1959), No. 9, art. No. 759. doi: 10.1149/1.2427493
      [24]
      L. Jiang, J.A. Syed, Y.Z. Gao, H.B. Lu, and X.K. Meng, Electrodeposition of Ni(OH)2 reinforced polyaniline coating for corrosion protection of 304 stainless steel, Appl. Surf. Sci., 440(2018), p. 1011. doi: 10.1016/j.apsusc.2018.01.145
      [25]
      Y. Wang and D.O. Northwood, An investigation into the effects of a nano-thick gold interlayer on polypyrrole coatings on 316L stainless steel for the bipolar plates of PEM fuel cells, J. Power Sources, 175(2008), No. 1, p. 40. doi: 10.1016/j.jpowsour.2007.09.089
      [26]
      C. Xia, Y. Li, Y. Tian, et al., Intermediate temperature fuel cell with a doped ceria-carbonate composite electrolyte, J. Power Sources, 195(2010), No. 10, p. 3149. doi: 10.1016/j.jpowsour.2009.11.104
      [27]
      L. Ai, Y. Liu, X.Y. Zhang, X.H. Ouyang, and Z.Y. Ge, A facile and template-free method for preparation of polythiophene microspheres and their dispersion for waterborne corrosion protection coatings, Synth. Met., 191(2014), p. 41. doi: 10.1016/j.synthmet.2014.02.004
      [28]
      K. Zhang and S. Sharma, Site-selective, low-loading, Au nanoparticle-polyaniline hybrid coatings with enhanced corrosion resistance and conductivity for fuel cells, ACS Sustain. Chem. Eng., 5(2017), No. 1, p. 277. doi: 10.1021/acssuschemeng.6b01504
      [29]
      A. Jacques, B. Barthélémy, J. Delhalle, and Z. Mekhalif, 1-Pyrrolyl-10-decylammoniumphosphonate monolayer: A molecular nanolink between electropolymerized pyrrole films and nickel or titanium surfaces, Electrochim. Acta, 170(2015), p. 218. doi: 10.1016/j.electacta.2015.04.123
      [30]
      M. Rohwerder and A. Michalik, Conducting polymers for corrosion protection: What makes the difference between failure and success? Electrochim. Acta, 53(2007), No. 3, p. 1300. doi: 10.1016/j.electacta.2007.05.026
      [31]
      J.L. Tan, Z. Zhang, and D.T. Ge, Electrodeposition of adherent polypyrrole film on titanium surface with enhanced anti-corrosion performance, MATEC Web Conf., 130(2017), art. No. 08007. doi: 10.1051/matecconf/201713008007
      [32]
      V. Ball, Polydopamine films and particles with catalytic activity, Catal. Today, 301(2018), p. 196. doi: 10.1016/j.cattod.2017.01.031
      [33]
      Y. Liang, J. Wei, Y.X. Hu, et al., Metal-polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles, Nanoscale, 9(2017), No. 16, p. 5323. doi: 10.1039/C7NR00978J
      [34]
      T.L. Chang, X.J. Yu, and J.F. Liang, Polydopamine-enabled surface coating with nano-metals, Surf. Coat. Technol., 337(2018), p. 389. doi: 10.1016/j.surfcoat.2018.01.009
      [35]
      W. Tamakloe, D.A. Agyeman, M. Park, J. Yang, and Y.M. Kang, Polydopamine-induced surface functionalization of carbon nanofibers for Pd deposition enabling enhanced catalytic activity for the oxygen reduction and evolution reactions, J. Mater. Chem. A, 7(2019), No. 13, p. 7396. doi: 10.1039/C9TA00025A
      [36]
      X.H. Guo, M. Zhang, J. Zheng, et al., Fabrication of Co@SiO2@C/Ni submicrorattles as highly efficient catalysts for 4-nitrophenol reduction, Dalton Trans., 46(2017), No. 35, p. 11598. doi: 10.1039/C7DT02095C
      [37]
      C.H. Liu, Y.Y. Qiu, Y.J. Xia, et al., Noble-metal-free tungsten oxide/carbon (WOx/C) hybrid manowires for highly efficient hydrogen evolution, Nanotechnology, 28(2017), No. 44, art. No. 445403. doi: 10.1088/1361-6528/aa8613
      [38]
      K.M. Im, T.W. Kim, and J.R. Jeon, Metal-chelation-assisted deposition of polydopamine on human hair: A ready-to-use eumelanin-based hair dyeing methodology, ACS Biomater. Sci. Eng., 3(2017), No. 4, p. 628. doi: 10.1021/acsbiomaterials.7b00031
      [39]
      H. Lee, S.M. Dellatore, W.M. Miller, and P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, Science, 318(2007), No. 5849, p. 426. doi: 10.1126/science.1147241
      [40]
      H.Q. Li, Y.V. Aulin, L. Frazer, et al., Structure evolution and thermoelectric properties of carbonized polydopamine thin films, ACS Appl. Mater. Interfaces, 9(2017), No. 8, p. 6655. doi: 10.1021/acsami.6b15601
      [41]
      J.A.A. Ho, H.C. Chang, and W.T. Su, DOPA-mediated reduction allows the facile synthesis of fluorescent gold nanoclusters for use as sensing probes for ferric ions, Anal. Chem., 84(2012), No. 7, p. 3246. doi: 10.1021/ac203362g
      [42]
      C.C. Lu, M. Zhang, A.J. Li, X.W. He, and X.B. Yin, 3, 4-dihydroxy-L-phenylalanine for preparation of gold nanoparticles and as electron transfer promoter in H2O2 biosensor, Electroanalysis, 23(2011), No. 10, p. 2421. doi: 10.1002/elan.201100291
      [43]
      P.C. Huang, W.J. Ma, P. Yu, and L.Q. Mao, Dopamine-directed in situ and one-step synthesis of Au@Ag core-shell nanoparticles immobilized to a metal-organic framework for synergistic catalysis, Chem. Asian J., 11(2016), No. 19, p. 2705. doi: 10.1002/asia.201600469
      [44]
      Y.Z. Ni, G.S. Tong, J. Wang, et al., One-pot preparation of pomegranate-like polydopamine stabilized small gold nanoparticles with superior stability for recyclable nanocatalysts, RSC Adv., 6(2016), No. 47, p. 40698. doi: 10.1039/C6RA05902C
      [45]
      G.X. Su, C. Yang, and J.J. Zhu, Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine, Langmuir, 31(2015), No. 2, p. 817. doi: 10.1021/la504041f
      [46]
      V. Ball, D.D. Frari, V. Toniazzo, and D. Ruch, Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: Insights in the polydopamine deposition mechanism, J. Colloid Interface Sci., 386(2012), No. 1, p. 366. doi: 10.1016/j.jcis.2012.07.030
      [47]
      J.H. Jiang, L.P. Zhu, L.J. Zhu, B.K. Zhu, and Y.Y. Xu, Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films, Langmuir, 27(2011), No. 23, p. 14180. doi: 10.1021/la202877k
      [48]
      W. Zhang, F.K. Yang, Y.G. Han, R. Gaikwad, Z. Leonenko, and B.X. Zhao, Surface and tribological behaviors of the bioinspired polydopamine thin films under dry and wet conditions, Biomacromolecules, 14(2013), No. 2, p. 394. doi: 10.1021/bm3015768
      [49]
      F. Bernsmann, V. Ball, F. Addiego, et al., Dopamine–melanin film deposition depends on the used oxidant and buffer solution, Langmuir, 27(2011), No. 6, p. 2819. doi: 10.1021/la104981s
      [50]
      Y.H. Lee and T.G. Park, Facile fabrication of branched gold nanoparticles by reductive hydroxyphenol derivatives, Langmuir, 27(2011), No. 6, p. 2965. doi: 10.1021/la1044078
      [51]
      M. Bisaglia, S. Mammi, and L. Bubacco, Kinetic and structural analysis of the early oxidation products of dopamine: Analysis of the interactions with α-synuclein, J. Biol. Chem., 282(2007), No. 21, p. 15597. doi: 10.1074/jbc.M610893200
      [52]
      I. Iftikhar, K.M.A. El-Nour, and A. Brajter-Toth, Detection of transient dopamine antioxidant radicals using electrochemistry in electrospray ionization mass spectrometry, Electrochim. Acta, 249(2017), p. 145. doi: 10.1016/j.electacta.2017.07.087
      [53]
      S.N. Du, Y. Luo, Z.F. Liao, et al., New insights into the formation mechanism of gold nanoparticles using dopamine as a reducing agent, J. Colloid Interface Sci., 523(2018), p. 27. doi: 10.1016/j.jcis.2018.03.077
      [54]
      O. Terland, T. Flatmark, A. Tangerås, and M. Grønberg, Dopamine oxidation generates an oxidative stress mediated by dopamine semiquinone and unrelated to reactive oxygen species, J. Mol. Cell. Cardiol., 29(1997), No. 6, p. 1731. doi: 10.1006/jmcc.1997.0412
      [55]
      A. Klegeris, L.G. Korkina, and S.A. Greenfield, Autoxidation of dopamine: A comparison of luminescent and spectrophotometric detection in basic solutions, Free. Radic. Biol. Med., 18(1995), No. 2, p. 215. doi: 10.1016/0891-5849(94)00141-6
      [56]
      S.P. Mani, C. Anandan, and N. Rajendran, Formation of a protective nitride layer by electrochemical nitridation on 316L SS bipolar plates for a proton exchange membrane fuel cell (PEMFC), RSC Adv., 5(2015), No. 79, p. 64466. doi: 10.1039/C5RA05412E

    Catalog


    • /

      返回文章
      返回