留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 5
Apr.  2022

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  4735
  • HTML全文浏览量:  2056
  • PDF下载量:  411
  • 被引次数: 0
Jing Wang, Shangqian Zhao, Ling Tang, Fujuan Han, Yi Zhang, Yimian Xia, Lijun Wang, and Shigang Lu, Review of the electrochemical performance and interfacial issues of high-nickel layered cathodes in inorganic all-solid-state batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1003-1018. https://doi.org/10.1007/s12613-022-2453-0
Cite this article as:
Jing Wang, Shangqian Zhao, Ling Tang, Fujuan Han, Yi Zhang, Yimian Xia, Lijun Wang, and Shigang Lu, Review of the electrochemical performance and interfacial issues of high-nickel layered cathodes in inorganic all-solid-state batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1003-1018. https://doi.org/10.1007/s12613-022-2453-0
引用本文 PDF XML SpringerLink
特约综述

全固态锂电池中高镍三元材料的电化学性能及界面问题综述

  • 通讯作者:

    卢世刚    E-mail: lusg8867@163.com

文章亮点

  • (1) 分析了高镍三元材料在全固态电池与传统液体电池的电化学性能差异。
  • (2) 讨论了不同制备工艺对全固态电池电化学性能的影响,并给出了制备复合电极的建议。
  • (3) 从高镍三元材料与无机固态电解质界面总结了影响全固态电池中电化学性能的原因。
  • (4) 提出高镍三元材料在全固态电池中的应用方向和前景。
  • 全固态电池在高比能量和高安全性方面有很大潜力,这成为了下一代锂离子电池的发展方向之一。然而全固态电池中,高镍三元材料和无机固体电解质的匹配有待解决。本综述总结了全固态电池中高镍三元材料和无机固体电解质在充放电和循环过程中的界面反应以及机械接触问题。本文提出,高镍三元材料和无机固体电解质在空间上的均匀接触以及固体电解质的离子传导性是影响高镍三元材料性能的重要因素。并指出复合电极中的高镍三元材料和固体电解质之间的界面反应和接触损耗直接影响了离子和电子进入活性材料的通道。因此,在高镍三元材料表面构建缓冲层可以防止活性材料和电解质之间的直接接触,减缓它们的界面反应。适当的缓冲层也可以通过减少高镍三元材料在充放电过程中的体积变化来减缓界面接触损失。最后,为实现高镍三元材料全固态电池的发展愿景,我们提出了以下建议:(1)开发高镍三元材料和无机固体电解质的电化学体系;(2)阐明高镍三元材料和无机固体电解质之间的界面和电极过程的基础科学,阐明两种材料之间的界面化学和电化学反应的机制,并解决内在的安全问题;(3)加强对高镍三元材料和固体电解质复合电极的工程技术及其制备方法的开发,促进全固态电池的产业化。
  • Invited Review

    Review of the electrochemical performance and interfacial issues of high-nickel layered cathodes in inorganic all-solid-state batteries

    + Author Affiliations
    • All-solid-state batteries potentially exhibit high specific energy and high safety, which is one of the development directions for next-generation lithium-ion batteries. The compatibility of all-solid composite electrodes with high-nickel layered cathodes and inorganic solid electrolytes is one of the important problems to be solved. In addition, the interface and mechanical problems of high-nickel layered cathodes and inorganic solid electrolyte composite electrodes have not been thoroughly addressed. In this paper, the possible interface and mechanical problems in the preparation of high-nickel layered cathodes and inorganic solid electrolytes and their interface reaction during charge–discharge and cycling are reviewed. The mechanical contact problems from phenomena to internal causes are also analyzed. Uniform contact between the high-nickel cathode and solid electrolyte in space and the ionic conductivity of the solid electrolyte are the prerequisites for the good performance of a high-nickel layered cathode. The interface reaction and contact loss between the high-nickel layered cathode and solid electrolyte in the composite electrode directly affect the passage of ions and electrons into the active material. The buffer layer constructed on the high-nickel cathode surface can prevent direct contact between the active material and electrolyte and slow down their interface reaction. An appropriate protective layer can also slow down the interface contact loss by reducing the volume change of the high-nickel layered cathode during charge and discharge. Finally, the following recommendations are put forward to realize the development vision of high-nickel layered cathodes: (1) develop electrochemical systems for high-nickel layered cathodes and inorganic solid electrolytes; (2) elucidate the basic science of interface and electrode processes between high-nickel layered cathodes and inorganic solid electrolytes, clarify the mechanisms of the interfacial chemical and electrochemical reactions between the two materials, and address the intrinsic safety issues; (3) strengthen the development of research and engineering technologies and their preparation methods for composite electrodes with high-nickel layered cathodes and solid electrolytes and promote the industrialization of all-solid-state batteries.
    • loading
    • [1]
      C.N. Zou, Q. Zhao, G.S. Zhang, and B. Xiong, Energy revolution: From a fossil energy era to a new energy era, Nat. Gas Ind. B, 3(2016), No. 1, p. 1. doi: 10.1016/j.ngib.2016.02.001
      [2]
      Y.J. Song, Q. Ji, Y.J. Du, and J.B. Geng, The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets, Energy Econ., 84(2019), art. No. 104564. doi: 10.1016/j.eneco.2019.104564
      [3]
      T. Fujita, H. Chen, K.T. Wang, C.L. He, Y.B. Wang, G. Dodbiba, and Y.Z. Wei, Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 179. doi: 10.1007/s12613-020-2127-8
      [4]
      T. Kim, W.T. Song, D.Y. Son, L.K. Ono, and Y.B. Qi, Lithium-ion batteries: Outlook on present, future, and hybridized technologies, J. Mater. Chem. A, 7(2019), No. 7, p. 2942. doi: 10.1039/C8TA10513H
      [5]
      S.S. Zhang, Problems and their origins of Ni-rich layered oxide cathode materials, Energy Storage Mater., 24(2020), p. 247. doi: 10.1016/j.ensm.2019.08.013
      [6]
      A.K.C. Estandarte, J.C. Diao, A.V. Llewellyn, A. Jnawali, T.M.M. Heenan, S.R. Daemi, J.J. Bailey, S. Cipiccia, D. Batey, X.W. Shi, C. Rau, D.J.L. Brett, R. Jervis, I.K. Robinson, and P.R. Shearing, Operando Bragg coherent diffraction imaging of LiNi0.8Mn0.1Co0.1O2 primary particles within commercially printed NMC811 electrode sheets, ACS Nano, 15(2021), No. 1, p. 1321. doi: 10.1021/acsnano.0c08575
      [7]
      J. Jie, Y.L. Liu, L.N. Cong, B.H. Zhang, W. Lu, X.M. Zhang, J. Liu, H.M. Xie, and L.Q. Sun, High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery, J. Energy Chem., 49(2020), p. 80. doi: 10.1016/j.jechem.2020.01.019
      [8]
      S. Randau, D.A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, W.G. Zeier, F.H. Richter, and J. Janek, Benchmarking the performance of all-solid-state lithium batteries, Nat. Energy, 5(2020), No. 3, p. 259. doi: 10.1038/s41560-020-0565-1
      [9]
      Z.H. Zhang, T. Wei, J.H. Lu, Q.M. Xiong, Y.H. Ji, Z.Y. Zhu, and L.T. Zhang, Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1565. doi: 10.1007/s12613-020-2239-1
      [10]
      H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama, and M. Tatsumisago, Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere, Solid State Ionics, 182(2011), No. 1, p. 116. doi: 10.1016/j.ssi.2010.10.013
      [11]
      C.W. Sun, J. Liu, Y.D. Gong, D.P. Wilkinson, and J.J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 33(2017), p. 363. doi: 10.1016/j.nanoen.2017.01.028
      [12]
      A. Kuhn, V. Duppel, and B.V. Lotsch, Tetragonal Li10GeP2S12 and Li7GePS8 – Exploring the Li ion dynamics in LGPS Li electrolytes, Energy Environ. Sci., 6(2013), No. 12, p. 3548. doi: 10.1039/c3ee41728j
      [13]
      G.Z. Liu, W. Weng, Z.H. Zhang, L.P. Wu, J. Yang, and X.Y. Yao, Densified Li6PS5Cl nanorods with high ionic conductivity and improved critical current density for all-solid-state lithium batteries, Nano Lett., 20(2020), No. 9, p. 6660. doi: 10.1021/acs.nanolett.0c02489
      [14]
      Q. Liu, Q.P. Yu, S. Li, S.W. Wang, L.H. Zhang, B.Y. Cai, D. Zhou, and B.H. Li, Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in situ solidification, Energy Storage Mater., 25(2020), p. 613. doi: 10.1016/j.ensm.2019.09.023
      [15]
      T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, and S. Hasegawa, Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries, Adv. Mater., 30(2018), No. 44, art. No. 1803075. doi: 10.1002/adma.201803075
      [16]
      K.H. Park, K. Kaup, A. Assoud, Q. Zhang, X.H. Wu, and L.F. Nazar, High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries, ACS Energy Lett., 5(2020), No. 2, p. 533. doi: 10.1021/acsenergylett.9b02599
      [17]
      N. Ohta, K. Takada, I. Sakaguchi, L.Q. Zhang, R.Z. Ma, K. Fukuda, M. Osada, and T. Sasaki, LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Commun., 9(2007), No. 7, p. 1486. doi: 10.1016/j.elecom.2007.02.008
      [18]
      A. Sakuda, A. Hayashi, and M. Tatsumisago, Interfacial observation between LiCoO2 electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy, Chem. Mater., 22(2010), No. 3, p. 949. doi: 10.1021/cm901819c
      [19]
      L.Y. Wang, L.F. Wang, R. Wang, R. Xu, C. Zhan, W. Yang, and G.C. Liu, Solid electrolyte–electrode interface based on buffer therapy in solid-state lithium batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1584. doi: 10.1007/s12613-021-2278-2
      [20]
      M. Dixit, B. Markovsky, F. Schipper, D. Aurbach, and D.T. Major, Origin of structural degradation during cycling and low thermal stability of Ni-rich layered transition metal-based electrode materials, J. Phys. Chem. C, 121(2017), No. 41, p. 22628. doi: 10.1021/acs.jpcc.7b06122
      [21]
      S.K. Heiskanen, N. Laszczynski, and B.L. Lucht, Perspective—Surface reactions of electrolyte with LiNixCoyMnzO2 cathodes for lithium ion batteries, J. Electrochem. Soc., 167(2020), No. 10, art. No. 100519. doi: 10.1149/1945-7111/ab981c
      [22]
      R.A. House, J.J. Marie, M.A. Pérez-Osorio, G.J. Rees, E. Boivin, and P.G. Bruce, The role of O2 in O-redox cathodes for Li-ion batteries, Nat. Energy, 6(2021), No. 8, p. 781. doi: 10.1038/s41560-021-00780-2
      [23]
      X.N. Li, J.W. Liang, N. Chen, J. Luo, K.R. Adair, C.H. Wang, M.N. Banis, T.K. Sham, L. Zhang, S.Q. Zhao, S.G. Lu, H. Huang, R.Y. Li, and X.L. Sun, Water-mediated synthesis of a superionic halide solid electrolyte, Angew. Chem. Int. Ed., 58(2019), No. 46, p. 16427. doi: 10.1002/anie.201909805
      [24]
      S.X. Deng, X. Li, Z.H. Ren, W.H. Li, J. Luo, J.W. Liang, J.N. Liang, M.N. Banis, M.S. Li, Y. Zhao, X.N. Li, C.H. Wang, Y.P. Sun, Q. Sun, R.Y. Li, Y.F. Hu, H. Huang, L. Zhang, S.G. Lu, J. Luo, and X.L. Sun, Dual-functional interfaces for highly stable Ni-rich layered cathodes in sulfide all-solid-state batteries, Energy Storage Mater., 27(2020), p. 117. doi: 10.1016/j.ensm.2020.01.009
      [25]
      X.N. Li, J.W. Liang, J. Luo, M.N. Banis, C.H. Wang, W.H. Li, S.X. Deng, C. Yu, F.P. Zhao, Y.F. Hu, T.K. Sham, L. Zhang, S.Q. Zhao, S.G. Lu, H. Huang, R.Y. Li, K.R. Adair, and X.L. Sun, Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries, Energy Environ. Sci., 12(2019), No. 9, p. 2665. doi: 10.1039/C9EE02311A
      [26]
      X.N. Li, J.W. Liang, K.R. Adair, J.J. Li, W.H. Li, F.P. Zhao, Y.F. Hu, T.K. Sham, L. Zhang, S.Q. Zhao, S.G. Lu, H. Huang, R.Y. Li, N. Chen, and X.L. Sun, Origin of superionic Li3Y1−xInxCl6 halide solid electrolytes with high humidity tolerance, Nano Lett., 20(2020), No. 6, p. 4384. doi: 10.1021/acs.nanolett.0c01156
      [27]
      Q. Zhang, D.X. Cao, Y. Ma, A. Natan, P. Aurora, and H.L. Zhu, Sulfide-based solid-state electrolytes: Synthesis, stability, and potential for all-solid-state batteries, Adv. Mater., 31(2019), No. 44, art. No. 1901131. doi: 10.1002/adma.201901131
      [28]
      H.J. Noh, S. Youn, C.S. Yoon, and Y.K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources, 233(2013), p. 121. doi: 10.1016/j.jpowsour.2013.01.063
      [29]
      X.L. Li, Y.M. Sun, Z.Y. Wang, X.Q. Wang, H.Z. Zhang, D.W. Song, L.Q. Zhang, and L.Y. Zhu, High-rate and long-life Ni-rich oxide cathode under high mass loading for sulfide-based all-solid-state lithium batteries, Electrochim. Acta, 391(2021), art. No. 138917. doi: 10.1016/j.electacta.2021.138917
      [30]
      T. Yoshinari, R. Koerver, P. Hofmann, Y. Uchimoto, W.G. Zeier, and J. Janek, Interfacial stability of phosphate-NASICON solid electrolytes in Ni-rich NCM cathode-based solid-state batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 26, p. 23244. doi: 10.1021/acsami.9b05995
      [31]
      Y.J. Nam, D.Y. Oh, S.H. Jung, and Y.S. Jung, Toward practical all-solid-state lithium-ion batteries with high energy density and safety: Comparative study for electrodes fabricated by dry- and slurry-mixing processes, J. Power Sources, 375(2018), p. 93. doi: 10.1016/j.jpowsour.2017.11.031
      [32]
      X.S. Liu, B.Z. Zheng, J. Zhao, W.M. Zhao, Z.T. Liang, Y. Su, C.P. Xie, K. Zhou, Y.X. Xiang, J.P. Zhu, H.C. Wang, G.M. Zhong, Z.L. Gong, J.Y. Huang, and Y. Yang, Electrochemo–mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries, Adv. Energy Mater., 11(2021), No. 8, art. No. 2003583. doi: 10.1002/aenm.202003583
      [33]
      S.H. Jung, U.H. Kim, J.H. Kim, S. Jun, C.S. Yoon, Y.S. Jung, and Y.K. Sun, Ni-rich layered cathode materials with electrochemo–mechanically compliant microstructures for all-solid-state Li batteries, Adv. Energy Mater., 10(2020), No. 6, art. No. 1903360. doi: 10.1002/aenm.201903360
      [34]
      F. Hippauf, B. Schumm, S. Doerfler, H. Althues, S. Fujiki, T. Shiratsuchi, T. Tsujimura, Y. Aihara, and S. Kaskel, Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach, Energy Storage Mater., 21(2019), p. 390. doi: 10.1016/j.ensm.2019.05.033
      [35]
      Y. Han, S.H. Jung, H. Kwak, S. Jun, H.H. Kwak, J.H. Lee, S.T. Hong, and Y.S. Jung, Single- or poly-crystalline Ni-rich layered cathode, sulfide or halide solid electrolyte: Which will be the winners for all-solid-state batteries? Adv. Energy Mater., 11(2021), No. 21, art. No. 2100126. doi: 10.1002/aenm.202100126
      [36]
      J.M. Doux, Y. Yang, D.H.S. Tan, H. Nguyen, E.A. Wu, X.F. Wang, A. Banerjee, and Y.S. Meng, Pressure effects on sulfide electrolytes for all solid-state batteries, J. Mater. Chem. A, 8(2020), No. 10, p. 5049. doi: 10.1039/C9TA12889A
      [37]
      D.Y. Oh, D.H. Kim, S.H. Jung, J.G. Han, N.S. Choi, and Y.S. Jung, Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries, J. Mater. Chem. A, 5(2017), No. 39, p. 20771. doi: 10.1039/C7TA06873E
      [38]
      G. Bucci, B. Talamini, A.R. Balakrishna, Y.M. Chiang, and W.C. Carter, Mechanical instability of electrode–electrolyte interfaces in solid-state batteries, Phys. Rev. Mater., 2(2018), No. 10, art. No. 105407. doi: 10.1103/PhysRevMaterials.2.105407
      [39]
      H. Cha, J. Kim, H. Lee, N. Kim, J. Hwang, J. Sung, M. Yoon, K. Kim, and J. Cho, Boosting reaction homogeneity in high-energy lithium-ion battery cathode materials, Adv. Mater., 32(2020), No. 39, art. No. 2003040. doi: 10.1002/adma.202003040
      [40]
      H.H. Ryu, K.J. Park, C.S. Yoon, and Y.K. Sun, Capacity fading of Ni-rich Li[NixCoyMn1−xy]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem. Mater., 30(2018), No. 3, p. 1155. doi: 10.1021/acs.chemmater.7b05269
      [41]
      H.H. Ryu, G.T. Park, C.S. Yoon, and Y.K. Sun, Microstructural degradation of Ni-rich Li[NixCoyMn1−xy]O2 cathodes during accelerated calendar aging, Small, 14(2018), No. 45, art. No. 1803179. doi: 10.1002/smll.201803179
      [42]
      C.K. Yang, L.Y. Qi, Z.C. Zuo, R.N. Wang, M. Ye, J. Lu, and H.H. Zhou, Insights into the inner structure of high-nickel agglomerate as high-performance lithium-ion cathodes, J. Power Sources, 331(2016), p. 487. doi: 10.1016/j.jpowsour.2016.09.068
      [43]
      P.F. Yan, J.M. Zheng, J. Liu, B.Q. Wang, X.P. Cheng, Y.F. Zhang, X.L. Sun, C.M. Wang, and J.G. Zhang, Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries, Nat. Energy, 3(2018), No. 7, p. 600. doi: 10.1038/s41560-018-0191-3
      [44]
      H.H. Sun, H.H. Ryu, U.H. Kim, J.A. Weeks, A. Heller, Y.K. Sun, and C.B. Mullins, Beyond doping and coating: Prospective strategies for stable high-capacity layered Ni-rich cathodes, ACS Energy Lett., 5(2020), No. 4, p. 1136. doi: 10.1021/acsenergylett.0c00191
      [45]
      A. Sakuda, K. Kuratani, M. Yamamoto, M. Takahashi, T. Takeuchi, and H. Kobayashi, All-solid-state battery electrode sheets prepared by a slurry coating process, J. Electrochem. Soc., 164(2017), No. 12, p. A2474. doi: 10.1149/2.0951712jes
      [46]
      C.W. Wang, K. Fu, S.P. Kammampata, D.W. McOwen, A.J. Samson, L. Zhang, G.T. Hitz, A.M. Nolan, E.D. Wachsman, Y.F. Mo, V. Thangadurai, and L.B. Hu, Garnet-type solid-state electrolytes: Materials, interfaces, and batteries, Chem. Rev., 120(2020), No. 10, p. 4257. doi: 10.1021/acs.chemrev.9b00427
      [47]
      T. Kato, T. Hamanaka, K. Yamamoto, T. Hirayama, F. Sagane, M. Motoyama, and Y. Iriyama, In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery, J. Power Sources, 260(2014), p. 292. doi: 10.1016/j.jpowsour.2014.02.102
      [48]
      K. Park, B.C. Yu, J.W. Jung, Y.T. Li, W.D. Zhou, H.C. Gao, S. Son, and J.B. Goodenough, Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12, Chem. Mater., 28(2016), No. 21, p. 8051. doi: 10.1021/acs.chemmater.6b03870
      [49]
      C.S. Wu, J.T. Lou, J. Zhang, Z.Y. Chen, A. Kakar, B. Emley, Q. Ai, H. Guo, Y.L. Liang, J. Lou, Y. Yao, and Z. Fan, Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes, Nano Energy, 87(2021), art. No. 106081. doi: 10.1016/j.nanoen.2021.106081
      [50]
      W.B. Zhang, F.H. Richter, S.P. Culver, T. Leichtweiss, J.G. Lozano, C. Dietrich, P.G. Bruce, W.G. Zeier, and J. Janek, Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery, ACS Appl. Mater. Interfaces, 10(2018), No. 26, p. 22226. doi: 10.1021/acsami.8b05132
      [51]
      S. Noh, W.T. Nichols, M. Cho, and D. Shin, Importance of mixing protocol for enhanced performance of composite cathodes in all-solid-state batteries using sulfide solid electrolyte, J. Electroceram., 40(2018), No. 4, p. 293. doi: 10.1007/s10832-018-0129-y
      [52]
      R.C. Xu, X.H. Xia, S.Z. Zhang, D. Xie, X.L. Wang, and J.P. Tu, Interfacial challenges and progress for inorganic all-solid-state lithium batteries, Electrochim. Acta, 284(2018), p. 177. doi: 10.1016/j.electacta.2018.07.191
      [53]
      X.Y. Ke, Y. Wang, G.F. Ren, and C. Yuan, Towards rational mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries, Energy Storage Mater., 26(2020), p. 313. doi: 10.1016/j.ensm.2019.08.029
      [54]
      Y.Y. Lu, Z.Y. Tu, and L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 13(2014), No. 10, p. 961. doi: 10.1038/nmat4041
      [55]
      T. Liu, Y.B. Zhang, R.J. Chen, S.X. Zhao, Y.H. Lin, C.W. Nan, and Y. Shen, Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact, Electrochem. Commun., 79(2017), p. 1. doi: 10.1016/j.elecom.2017.03.016
      [56]
      L.X. Bai, W.D. Xue, Y. Li, X.G. Liu, Y. Li, and J.L. Sun, The interfacial behaviours of all-solid-state lithium ion batteries, Ceram. Int., 44(2018), No. 7, p. 7319. doi: 10.1016/j.ceramint.2018.01.190
      [57]
      K. Lee, S. Kim, J. Park, S.H. Park, A. Coskun, D.S. Jung, W. Cho, and J.W. Choi, Selection of binder and solvent for solution-processed all-solid-state battery, J. Electrochem. Soc., 164(2017), No. 9, p. A2075. doi: 10.1149/2.1341709jes
      [58]
      J. Zhang, H.Y. Zhong, C. Zheng, Y. Xia, C. Liang, H. Huang, Y.P. Gan, X.Y. Tao, and W.K. Zhang, All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content, J. Power Sources, 391(2018), p. 73. doi: 10.1016/j.jpowsour.2018.04.069
      [59]
      A. Bielefeld, D.A. Weber, and J. Janek, Modeling effective ionic conductivity and binder influence in composite cathodes for all-solid-state batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 11, p. 12821. doi: 10.1021/acsami.9b22788
      [60]
      N. Delaporte, A. Darwiche, M. Léonard, G. Lajoie, H. Demers, D. Clément, R. Veillette, L. Rodrigue, M.L. Trudeau, C. Kim, and K. Zaghib, Facile formulation and fabrication of the cathode using a self-lithiated carbon for all-solid-state batteries, Sci. Rep., 10(2020), art. No. 11813. doi: 10.1038/s41598-020-68865-8
      [61]
      C.F. Liu, J.F. Yuan, R. Masse, X.X. Jia, W.C. Bi, Z. Neale, T. Shen, M. Xu, M. Tian, J.Q. Zheng, J.J. Tian, and G.Z. Cao, Interphases, interfaces, and surfaces of active materials in rechargeable batteries and perovskite solar cells, Adv. Mater., 33(2021), No. 22, art. No. 1905245. doi: 10.1002/adma.201905245
      [62]
      J. Haruyama, K. Sodeyama, L.Y. Han, K. Takada, and Y. Tateyama, Space–charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery, Chem. Mater., 26(2014), No. 14, p. 4248. doi: 10.1021/cm5016959
      [63]
      L.L. Wang, R.C. Xie, B.B. Chen, X.R. Yu, J. Ma, C. Li, Z.W. Hu, X.W. Sun, C.J. Xu, S.M. Dong, T.S. Chan, J. Luo, G.L. Cui, and L.Q. Chen, In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries, Nat. Commun., 11(2020), art. No. 5889. doi: 10.1038/s41467-020-19726-5
      [64]
      J. Zhang, C. Zheng, L.J. Li, Y. Xia, H. Huang, Y.P. Gan, C. Liang, X.P. He, X.Y. Tao, and W.K. Zhang, Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries, Adv. Energy Mater., 10(2020), No. 4, art. No. 1903311. doi: 10.1002/aenm.201903311
      [65]
      L. Froboese, J.F. van der Sichel, T. Loellhoeffel, L. Helmers, and A. Kwade, Effect of microstructure on the ionic conductivity of an all solid-state battery electrode, J. Electrochem. Soc., 166(2019), No. 2, p. A318. doi: 10.1149/2.0601902jes
      [66]
      X.N. Li, J.W. Liang, X.F. Yang, K.R. Adair, C.H. Wang, F.P. Zhao, and X.L. Sun, Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries, Energy Environ. Sci., 13(2020), No. 5, p. 1429. doi: 10.1039/C9EE03828K
      [67]
      L. Xu, S. Tang, Y. Cheng, K.Y. Wang, J.Y. Liang, C. Liu, Y.C. Cao, F. Wei, and L.Q. Mai, Interfaces in solid-state lithium batteries, Joule, 2(2018), No. 10, p. 1991. doi: 10.1016/j.joule.2018.07.009
      [68]
      Y.Z. Zhu, X.F. He, and Y.F. Mo, Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations, ACS Appl. Mater. Interfaces, 7(2015), No. 42, p. 23685. doi: 10.1021/acsami.5b07517
      [69]
      X.N. Li, J.W. Liang, J. Luo, C.H. Wang, X. Li, Q. Sun, R.Y. Li, L. Zhang, R. Yang, S.G. Lu, H. Huang, and X.L. Sun, High-performance Li–SeSx all-solid-state lithium batteries, Adv. Mater., 31(2019), No. 17, art. No. 1808100. doi: 10.1002/adma.201808100
      [70]
      A. Banerjee, H.M. Tang, X.F. Wang, J.H. Cheng, H. Nguyen, M.H. Zhang, D.H.S. Tan, T.A. Wynn, E.A. Wu, J.M. Doux, T.P. Wu, L. Ma, G.E. Sterbinsky, M.S. D’Souza, S.P. Ong, and Y.S. Meng, Revealing nanoscale solid–solid interfacial phenomena for long-life and high-energy all-solid-state batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 46, p. 43138. doi: 10.1021/acsami.9b13955
      [71]
      M.V. Reddy, C.M. Julien, A. Mauger, and K. Zaghib, Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: A review, Nanomaterials, 10(2020), No. 8, art. No. 1606. doi: 10.3390/nano10081606
      [72]
      N. Zhang, X.H. Long, Z. Wang, P.F. Yu, F.D. Han, J.M. Fu, G.X. Ren, Y.R. Wu, S. Zheng, W.C. Huang, C.S. Wang, H. Li, and X.S. Liu, Mechanism study on the interfacial stability of a lithium garnet-type oxide electrolyte against cathode materials, ACS Appl. Energy Mater., 1(2018), No. 11, p. 5968. doi: 10.1021/acsaem.8b01035
      [73]
      S. Wang, Q. Bai, A.M. Nolan, Y.S. Liu, S. Gong, Q. Sun, and Y.F. Mo, Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability, Angew. Chem. Int. Ed., 58(2019), No. 24, p. 8039. doi: 10.1002/anie.201901938
      [74]
      Y.H. Xiao, Y. Wang, S.H. Bo, J.C. Kim, L.J. Miara, and G. Ceder, Understanding interface stability in solid-state batteries, Nat. Rev. Mater., 5(2020), No. 2, p. 105. doi: 10.1038/s41578-019-0157-5
      [75]
      D. Park, H. Park, Y. Lee, S.O. Kim, H.G. Jung, K.Y. Chung, J.H. Shim, and S. Yu, Theoretical design of lithium chloride superionic conductors for all-solid-state high-voltage lithium-ion batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 31, p. 34806. doi: 10.1021/acsami.0c07003
      [76]
      N.Y. Park, H.H. Ryu, G.T. Park, T.C. Noh, and Y.K. Sun, Optimized Ni-rich NCMA cathode for electric vehicle batteries, Adv. Energy Mater., 11(2021), No. 9, art. No. 2003767. doi: 10.1002/aenm.202003767
      [77]
      B.Y. Zhu, Z.H. Yu, L. Meng, Z.Y. Xu, C.X. Lv, Y. Wang, G.Y. Wei, and J.K. Qu, The relationship between failure mechanism of nickel-rich layered oxide for lithium batteries and the research progress of coping strategies: A review, Ionics, 27(2021), No. 7, p. 2749. doi: 10.1007/s11581-021-04019-8
      [78]
      T. Bartsch, A.Y. Kim, F. Strauss, L. de Biasi, J.H. Teo, J. Janek, P. Hartmann, and T. Brezesinski, Indirect state-of-charge determination of all-solid-state battery cells by X-ray diffraction, Chem. Commun., 55(2019), No. 75, p. 11223. doi: 10.1039/C9CC04453A
      [79]
      L. de Biasi, A.O. Kondrakov, H. Geßwein, T. Brezesinski, P. Hartmann, and J. Janek, Between Scylla and Charybdis: Balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries, J. Phys. Chem. C, 121(2017), No. 47, p. 26163. doi: 10.1021/acs.jpcc.7b06363
      [80]
      R. Koerver, W.B. Zhang, L. de Biasi, S. Schweidler, A.O. Kondrakov, S. Kolling, T. Brezesinski, P. Hartmann, W.G. Zeier, and J. Janek, Chemo-mechanical expansion of lithium electrode materials – On the route to mechanically optimized all-solid-state batteries, Energy Environ. Sci., 11(2018), No. 8, p. 2142. doi: 10.1039/C8EE00907D
      [81]
      R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W.B. Zhang, J.O. Binder, P. Hartmann, W.G. Zeier, and J. Janek, Capacity fade in solid-state batteries: Interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes, Chem. Mater., 29(2017), No. 13, p. 5574. doi: 10.1021/acs.chemmater.7b00931
      [82]
      T. Shi, Y.Q. Zhang, Q.S. Tu, Y.H. Wang, M.C. Scott, and G. Ceder, Characterization of mechanical degradation in an all-solid-state battery cathode, J. Mater. Chem. A, 8(2020), No. 34, p. 17399. doi: 10.1039/D0TA06985J
      [83]
      Y.H. Xiao, L.J. Miara, Y. Wang, and G. Ceder, Computational screening of cathode coatings for solid-state batteries, Joule, 3(2019), No. 5, p. 1252. doi: 10.1016/j.joule.2019.02.006
      [84]
      W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, and G. Ceder, Interface stability in solid-state batteries, Chem. Mater., 28(2016), No. 1, p. 266. doi: 10.1021/acs.chemmater.5b04082
      [85]
      F. Walther, F. Strauss, X.H. Wu, B. Mogwitz, J. Hertle, J. Sann, M. Rohnke, T. Brezesinski, and J. Janek, The working principle of a Li2CO3/LiNbO3 coating on NCM for thiophosphate-based all-solid-state batteries, Chem. Mater., 33(2021), No. 6, p. 2110. doi: 10.1021/acs.chemmater.0c04660
      [86]
      X.L. Li, Q.F. Sun, Z.Y. Wang, D.W. Song, H.Z. Zhang, X.X. Shi, C.L. Li, L.Q. Zhang, and L.Y. Zhu, Outstanding electrochemical performances of the all-solid-state lithium battery using Ni-rich layered oxide cathode and sulfide electrolyte, J. Power Sources, 456(2020), art. No. 227997. doi: 10.1016/j.jpowsour.2020.227997
      [87]
      J.S. Lee and Y.J. Park, Comparison of LiTaO3 and LiNbO3 surface layers prepared by post- and precursor-based coating methods for Ni-rich cathodes of all-solid-state batteries, ACS Appl. Mater. Interfaces, 13(2021), No. 32, p. 38333. doi: 10.1021/acsami.1c10294
      [88]
      F. Strauss, J.H. Teo, J. Maibach, A.Y. Kim, A. Mazilkin, J. Janek, and T. Brezesinski, Li2ZrO3-coated NCM622 for application in inorganic solid-state batteries: Role of surface carbonates in the cycling performance, ACS Appl. Mater. Interfaces, 12(2020), No. 51, p. 57146. doi: 10.1021/acsami.0c18590
      [89]
      H. Visbal, Y. Aihara, S. Ito, T. Watanabe, Y. Park, and S. Doo, The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics, J. Power Sources, 314(2016), p. 85. doi: 10.1016/j.jpowsour.2016.02.088
      [90]
      J. Yang, B.X. Huang, J.Y. Yin, X.Y. Yao, G. Peng, J. Zhou, and X.X. Xu, Structure integrity endowed by a Ti-containing surface layer towards ultrastable LiNi0.8Co0.15Al0.05O2 for all-solid-state lithium batteries, J. Electrochem. Soc., 163(2016), No. 8, p. A1530. doi: 10.1149/2.0331608jes
      [91]
      A.Y. Kim, F. Strauss, T. Bartsch, J.H. Teo, T. Hatsukade, A. Mazilkin, J. Janek, P. Hartmann, and T. Brezesinski, Stabilizing effect of a hybrid surface coating on a Ni-rich NCM cathode material in all-solid-state batteries, Chem. Mater., 31(2019), No. 23, p. 9664. doi: 10.1021/acs.chemmater.9b02947
      [92]
      Y.J. Kim, R. Rajagopal, S. Kang, and K.S. Ryu, Novel dry deposition of LiNbO3 or Li2ZrO3 on LiNi0.6Co0.2Mn0.2O2 for high performance all-solid-state lithium batteries, Chem. Eng. J., 386(2020), art. No. 123975. doi: 10.1016/j.cej.2019.123975
      [93]
      Y.G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J.H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, and I.T. Han, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes, Nat. Energy, 5(2020), No. 4, p. 299. doi: 10.1038/s41560-020-0575-z
      [94]
      X.L. Li, L.B. Jin, D.W. Song, H.Z. Zhang, X.X. Shi, Z.Y. Wang, L.Q. Zhang, and L.Y. Zhu, LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery, J. Energy Chem., 40(2020), p. 39. doi: 10.1016/j.jechem.2019.02.006
      [95]
      Y.B. Zhang, X. Sun, D.X. Cao, G.H. Gao, Z.Z. Yang, H.L. Zhu, and Y. Wang, Self-stabilized LiNi0.8Mn0.1Co0.1O2 in thiophosphate-based all-solid-state batteries through extra LiOH, Energy Storage Mater., 41(2021), p. 505. doi: 10.1016/j.ensm.2021.06.024
      [96]
      F.D. Han, J. Yue, C. Chen, N. Zhao, X.L. Fan, Z.H. Ma, T. Gao, F. Wang, X.X. Guo, and C.S. Wang, Interphase engineering enabled all-ceramic lithium battery, Joule, 2(2018), No. 3, p. 497. doi: 10.1016/j.joule.2018.02.007

    Catalog


    • /

      返回文章
      返回