留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(13)

数据统计

分享

计量
  • 文章访问数:  7158
  • HTML全文浏览量:  883
  • PDF下载量:  500
  • 被引次数: 0
Guanzhou Qiuand Yufeng Guo, Current situation and development trend of titanium metal industry in China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 599-610. https://doi.org/10.1007/s12613-022-2455-y
Cite this article as:
Guanzhou Qiuand Yufeng Guo, Current situation and development trend of titanium metal industry in China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 599-610. https://doi.org/10.1007/s12613-022-2455-y
引用本文 PDF XML SpringerLink
特约综述

我国钛金属工业的现状及发展趋势

  • 通讯作者:

    郭宇峰    E-mail: yfguo@csu.edu.cn

文章亮点

  • (1) 全面分析我国钛产业发展现状,强调金属钛及钛合金等高端钛材对提升我国综合国力的重要意义,指出我国金属钛及钛合金等高端钛材制备成本高,现处于“不敢用、不会用、不懂用”的局面,导致产品结构失衡,应用量和应用水平受限。
  • (2) 阐述了我国钛资源禀赋差、钙镁杂质含量高的特点,指出解决其利用率和利用水平低的难题,是解决我国高端钛材生产原料进口问题和提升产品品质的关键。
  • (3) 分析了钛材加工全过程,指出钛材加工成才率低、设备利用率低,是导致钛材加工成本高的主要原因。
  • (4) 针对利用我国高钙镁钛资源制备高端钛产品的难题,提出应从钛产业链出发,上游提升原料品质、中游钢钛结合生产、下游健全消费结构三方面,促进我国高端钛产品快速发展。
  • 金属钛及钛合金等高端钛材是我国高科技发展的关键支撑材料,对提升我国综合国力具有战略意义。钛应用量和钛工业发展水平是国家综合实力的重要标志。目前,我国高端钛材生产原料依赖进口,原料及加工成本高,产品结构失衡,严重制约高端钛材的应用量和应用水平。针对我国钛资源禀赋差的特点及钛产业现状,应从钛工业全产业链出发,上游提升原料品质,加快开发利用我国高钙镁钛资源生产出低成本高端钛材,中游发展钢钛联合生产,降低钛材加工成本,下游健全消费结构,扩大钛材的应用市场,全面提升我国钛工业水平,加快推进我国科技强国建设。
  • Invited Review

    Current situation and development trend of titanium metal industry in China

    + Author Affiliations
    • Titanium metal and alloy are key materials for technological development, which significantly promote the development of the high-tech economy in China. The consumption of high-end titanium materials and the developmental level of the titanium industry are important indexes of a country’s comprehensive power. However, at present, the application amount and level of high-end titanium materials in China are limited by many factors, including the dependence of raw materials on imports, high processing cost, and structural imbalance of products. Based on the characteristics of titanium resources and the current situation of the titanium industry, the whole titanium industrial chain in China should be updated. Improving the quality of raw materials is important to produce low-cost, high-end titanium materials using titanium resources with high calcium and magnesium contents in the Panxi region. In addition, the steel–titanium joint production is a vital step to reduce the processing cost of titanium materials. Moreover, the consumption structure of titanium materials should be completed to expand their application. Gradually implementing these suggestions, the overall level of China’s titanium industry will be greatly improved, thereby rapidly establishing an advanced scientific and technological country.
    • loading
    • [1]
      G.S. Wang, Application Technology of Titanium, Central South University Press, Changsha, 2007.
      [2]
      L. Guo, W.X. He, P. Zhou, and B. Liu, Research status and development prospect of titanium and titanium alloy products in China, Hot Work. Technol., 49(2020), No. 22, p. 22.
      [3]
      T. Nihei, K. Ohashi, M. Hattori, and S. Imazato, A surveillance study of the demand of titanium and titanium alloys in Japan, Dent. Mater. J., 39(2020), No. 1, p. 9. doi: 10.4012/dmj.2019-095
      [4]
      X.W. Zhang, W.Y. Zhang, Y. Tong, Y.C. Ouyang, and M.L. Song, Current situation and utilization trend of global titanium resources, Conserv. Util. Miner. Resour., 39(2019), No. 5, p. 68.
      [5]
      Y.Q. Zhao, P. Ge, and S.W. Xin, Progresses of R&D on Ti-alloy materials in recent 5 years, Mater. China, (39)2020, No. Z1, p. 527.
      [6]
      D.G. Qing, F. Chen, L. Qiao, and Z.Q. Chen, The study of the present situation of alloying elements for titanium alloys in China, China Titanium Ind., 9(2012), No. 1, p. 18.
      [7]
      X.M. Li, L. Liu, J. Dong, and P. Zhao, Discussion on economic analysis and decreasing cost process of titanium and titanium alloys, Mater. China, 34(2015), No. 5, p. 401.
      [8]
      R.G. Bai, Technology and development of high-efficiency clean utilization of vanadium–titanium ore resource in Cheng steel, Hebei Metall., 2015, No. 12, p. 1.
      [9]
      X.X. Chong, W.L. Luan, F.X. Wang, T.D. Qiu, and W.Y. Zhang, Overview of global titanium resources status and titanium consumption trend in China, Conserv. Util. Miner. Resour., 40(2020), No. 2, p. 162.
      [10]
      Z. Li, C.X. Chen, Z.H. Ge, B.X. Zhang, and Q. Wu, Discussion on the development and utilization situation and resource security of titanium resources in China, Land Resour. Inf., 2020, No. 10, p. 75.
      [11]
      R.B. Sun, Q.S. Wang, C.H. Yuan, C. Zhang, X.G. Zhang, and B.A. Teer, Analysis of global titanium resources situation, China Min. Mag., 28(2019), No. 6, p. 1.
      [12]
      C.X. Cui, B.M. Hu, L.C. Zhao, and S.J. Liu, Titanium alloy production technology, market prospects and industry development, Mater. Des., 32(2011), No. 3, p. 1684. doi: 10.1016/j.matdes.2010.09.011
      [13]
      Z. Yao and F. Deng, Discussion on the evolution and development trend of titanium resources industry in China, Met. Mine, 2018, No. 6, p. 61.
      [14]
      X. Wu and J. Zhang, Geographical distribution and characteristics of titanium resources in China, Titanium Ind. Prog., 23(2006), No. 6, p. 8.
      [15]
      Z.D. Lin, K.J. Song, and X.H. Yu, A review on wire and arc additive manufacturing of titanium alloy, J. Manuf. Process., 70(2021), p. 24. doi: 10.1016/j.jmapro.2021.08.018
      [16]
      H. Jia, F.S. Lu, and B. Hao, Report on China titanium industry progress in 2020, Titanium Ind. Prog., 38(2021), No. 2, p. 34.
      [17]
      L. Li, F.X. Zhu, P. Deng, D.F. Zhang, Y.Q. Jia, K.H. Li, L.X. Kong, and D.C. Liu, Behavior of magnesium impurity during carbochlorination of magnesium-bearing titanium slag in chloride media, J. Mater. Res. Technol., 13(2021), p. 204. doi: 10.1016/j.jmrt.2021.04.072
      [18]
      F. Chen, C.L. Liu, Y.K. Wen, F.X. Zhu, H.G. Yao, Y.F. Guo, S. Wang, and L.Z. Yang, The conversion of calcium-containing phases and their separation with NaCl in molten salt chlorinated slags at high temperature, Sustainability, 14(2021), No. 1, art. No. 293. doi: 10.3390/su14010293
      [19]
      L. Li, Research progress on application and technology of titanium tetrachloride both at home and abroad, Light. Met., 2021, No. 10, p. 42.
      [20]
      R. Jin, M.H. Zheng, G. Lammel, B.A.M. Bandowe, and G.R. Liu, Chlorinated and brominated polycyclic aromatic hydrocarbons: Sources, formation mechanisms, and occurrence in the environment, Prog. Energy Combust. Sci., 76(2020), art. No. 100803. doi: 10.1016/j.pecs.2019.100803
      [21]
      Y.F. Chen, X.N. Tang, S.P. Liu, B. Zhang, and G. Xie. Thermodynamic analysis of preparation of titanium tetrachloride by boiling chlorination process, Nonferrous Met. Eng., 9(2019), No. 5, p. 34.
      [22]
      G.C. Du, Z.C. Li, J.B. Zhang, H.C. Mao, S.G. Ma, C.L. Fan, and Q.S. Zhu, Chlorination behaviors for green and efficient vanadium recovery from tailing of refining crude titanium tetrachloride, J. Hazard. Mater., 420(2021), art. No. 126501. doi: 10.1016/j.jhazmat.2021.126501
      [23]
      J. Kang and T.H. Okabe, Removal of iron from titanium ore by selective chlorination using TiCl4 under high oxygen chemical potential, Int. J. Miner. Process., 149(2016), p. 111. doi: 10.1016/j.minpro.2016.02.014
      [24]
      J. Kim, M.S. Lee, and E.J. Jung, A study of formation behavior of porous structure induced by selective chlorination of ilmenite, Mater. Chem. Phys., 241(2020), art. No. 122433. doi: 10.1016/j.matchemphys.2019.122433
      [25]
      S. Kutsuna, Y. Ebihara, K. Nakamura, and T. Ibusuki, Heterogeneous photochemical reactions between volatile chlorinated hydrocarbons (trichloroethene and tetrachloroethene) and titanium dioxide, Atmos. Environ. Part A,, 27(1993), No. 4, p. 599.
      [26]
      F. Chen, Y.G. Wen, Y.F. Guo, F.Q. Zheng, S. Wang, L.Z. Yang, Y. Zheng, D.Y. Li, and Y.Q. Ren, Research status of viscosity characteristics of chlorinated molten salt system, Inorg. Chem. Ind., 2021, p. 1.
      [27]
      Y.Q. Jia, L Liang, W.L. Jiang, P. Deng, and D.C. Liu, Research progress of molten salt system and its physical properties for titanium metallurgy, J. Kunming Univ. Sci. Technol. Nat. Sci., 46(2021), No. 2, p. 1.
      [28]
      F.L. Zhang, S.W. Liu, Y.D. Hu, Y.L. Du, and X.L. Lei, Current situation and suggestion on development of titanium industry in China, Mod. Min., 31(2015), No. 4, p. 1.
      [29]
      J.S. Song, Scientific and sustainabie deveiopment of Chengde vanadium and titanium industry, Nonferrous Met. Process., 50(2021), No. 4, p. 7.
      [30]
      Y.M. Hwang, G.W. Kuo, and H.H. Liu, High temperature oxidation behavior in dieless drawing of titanium alloy wires, Procedia Manuf., 15(2018), p. 294. doi: 10.1016/j.promfg.2018.07.222
      [31]
      Wahyudiono, H. Kondo, S. Machmudah, H. Kanda, Y.P. Zhao, and M. Goto, Synthesis of titanium dioxide nanoparticle by means of discharge plasma over an aqueous solution under high-pressure gas environment, Alexandria Eng. J., 61(2022), No. 5, p. 3805. doi: 10.1016/j.aej.2021.08.081
      [32]
      P.J. Lu, S.C. Huang, Y.P. Chen, L.C. Chiueh, and D.Y.C. Shih, Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics, J. Food Drug Anal., 23(2015), No. 3, p. 587. doi: 10.1016/j.jfda.2015.02.009
      [33]
      Y.J. Zhang, T. Qi, and Y. Zhang, A novel preparation of titanium dioxide from titanium slag, Hydrometallurgy, 96(2009), No. 1-2, p. 52. doi: 10.1016/j.hydromet.2008.08.002
      [34]
      H.J. Gai, H.Z. Wang, L. Liu, B.X. Feng, M. Xiao, Y.B. Tang, X.F. Qu, H.B. Song, and T.T. Huang, Potassium and iodide codoped mesoporous titanium dioxide for enhancing photocatalytic degradation of phenolic compounds, Chem. Phys. Lett., 767(2021), art. No. 138367. doi: 10.1016/j.cplett.2021.138367
      [35]
      J.W. Wang, X.L. Ren, Q.F. Wei, D. Yang, and C.L. Wu, Current research situation and prospect for comprehensive utilization of waste acid from titanium dioxide production, Inorg. Chem. Ind., 41(2009), No. 9, p. 4.
      [36]
      H.Y. Pang, R.F. Lu, T. Zhang, L. Lü, Y.X. Chen, and S.W. Tang, Chemical dehydration coupling multi-effect evaporation to treat waste sulfuric acid in titanium dioxide production process, Chin. J. Chem. Eng., 28(2020), No. 4, p. 1162. doi: 10.1016/j.cjche.2020.02.009
      [37]
      Y. Xiong, B. Wu, J.W. Zhu, X.G. Fan, P.X. Cai, J. Wen, and X. Liu, Preparation of magnesium hydroxide from leachate of dolomitic phosphate ore with dilute waste acid from titanium dioxide production, Hydrometallurgy, 142(2014), p. 137. doi: 10.1016/j.hydromet.2013.11.013
      [38]
      M.J. Gazquez, J. Mantero, F. Mosqueda, I. Vioque, R. García-Tenorio, and J.P. Bolívar, Radiological and chemical risks by waste scales generated in the titanium dioxide industry, Chemosphere, 274(2021), art. No. 129732. doi: 10.1016/j.chemosphere.2021.129732
      [39]
      D. Wang, J.L. Chu, Y.H. Liu, J. Li, T.Y. Xue, W.J. Wang, and T. Qi, Novel process for titanium dioxide production from titanium slag: NaOH–KOH binary molten salt roasting and water leaching, Ind. Eng. Chem. Res., 52(2013), No. 45, p. 15756. doi: 10.1021/ie400701g
      [40]
      J.Z. Gong, Future trend and development course of titanium dioxide pigment industry for sixty years in China, Inorg. Chem. Ind., 52(2020), No. 10, p. 55.
      [41]
      Y. Xia, W.Q. Wang, L. Zhou, Z.Y. Sun, G. Wang, and X.C. Xu, Current status and development of China’s titanium, Coat. Prot., 42(2021), No. 9, p. 56.
      [42]
      H. Jia, F.S. Lu, and B. Hao, Report on China titanium industry progress in 2017, Titanium Ind. Prog., 35(2018), No. 2, p. 1.
      [43]
      H. Jia, F.S. Lu, and B. Hao, Report on China titanium industry progress in 2015, Titanium Ind. Prog., 33(2016), No. 2, p. 1.
      [44]
      F. Yang, Analysis of Capacity, Output and Import and Export Prices of Sponge Titanium in China in 2017, 2017 [2022-3-19]. https://www.chyxx.com/industry/201711/586034.html
      [45]
      T. Zhang, Analyzing of titanium patents at home and abroad, Iron Steel Vanadium Titanium, 38(2017), No. 6, p. 158.
      [46]
      G.Y. Jiang, Research on Titanium Mineral Availability in China [Dissertation], China University of Geosciences, Beijing, 2017.
      [47]
      Q.Y. Zhao, Y.N. Chen, Y.K. Xu, and Y.Q. Zhao, Progress and prospects of cost-effective manufacturing technologies for titanium alloys, Chin. J. Nonferrous Met., 31(2021), No. 11, p. 3127.
      [48]
      Z.X. Feng, J.H. Yi, Q.N. Shi, J. Tan, Y.M. Shi, Z.Y. Xu, and K. Liu, Research on sustainable development of titanium industry in China, J. Kunming Univ. Sci. Technol. Nat. Sci., 41(2016), No. 5, p. 16.
      [49]
      Z.B. Han and F.Z. Chang, Material Problem and solutions about further development of titanium industry in china, Titanium Ind. Prog., 29(2016), No. 1, p.p.5.
      [50]
      F. Chen, Y.F. Guo, T. Jiang, F.Q. Zheng, S. Wang, and L.Z. Yang, Effects of high pressure roller grinding on size distribution of vanadium–titanium magnetite concentrate particles and improvement of green pellet strength, J. Iron Steel Res. Int., 24(2017), No. 3, p. 266. doi: 10.1016/S1006-706X(17)30039-0
      [51]
      J.F. Jing, Y.F. Guo, F.Q. Zheng, X.L. Xie, L.Z. Yang, and F. Chen, Development status on comprehensive utilization of Ti-bearing blast furnace slag, Met. Mine, 2018, No. 4, p. 185.
      [52]
      S.S. Liu, Y.F. Guo, G.Z. Qiu, and T. Jiang, Mechanism of vanadic titanomagnetite solid-state reduction, Rare Met., 39(2020), No. 11, p. 1348. doi: 10.1007/s12598-014-0294-3
      [53]
      T. Jiang, S. Wang, Y.F. Guo, F. Chen, and F.Q. Zheng, Effects of basicity and MgO in slag on the behaviors of smelting vanadium titanomagnetite in the direct reduction–electric furnace process, Metals, 6(2016), No. 5, art. No. 107. doi: 10.3390/met6050107
      [54]
      S. Wang, Y.F. Guo, F.Q. Zheng, F. Chen, L.Z. Yang, T. Jiang, and G.Z. Qiu, Behavior of vanadium during reduction and smelting of vanadium titanomagnetite metallized pellets, Trans. Nonferrous Met. Soc. China, 30(2020), No. 6, p. 1687. doi: 10.1016/S1003-6326(20)65330-4
      [55]
      Y.L. Sui, Y.F. Guo, T. Jiang, X.L. Xie, S. Wang, and F.Q. Zheng, Gas-based reduction of vanadium titano-magnetite concentrate: Behavior and mechanisms, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 10. doi: 10.1007/s12613-017-1373-x
      [56]
      S.S. Liu, Y.F. Guo, G.Z. Qiu, T. Jiang, and F. Chen, Solid-state reduction kinetics and mechanism of pre-oxidized vanadium–titanium magnetite concentrate, Trans. Nonferrous Met. Soc. China, 24(2014), No. 10, p. 3372. doi: 10.1016/S1003-6326(14)63479-8
      [57]
      F.Q. Zheng, Y.F. Guo, G.Z. Qiu, F. Chen, S. Wang, Y.L. Sui, T. Jiang, and L.Z. Yang, A novel process for preparation of titanium dioxide from Ti-bearing electric furnace slag: NH4HF2–HF leaching and hydrolyzing process, J. Hazard. Mater., 344(2018), p. 490. doi: 10.1016/j.jhazmat.2017.10.042
      [58]
      S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, and L.Z. Yang, Melting behavior of titanium-bearing electric furnace slag for effective smelting of vanadium titanomagnetite, JOM, 71(2019), No. 5, p. 1858. doi: 10.1007/s11837-018-2983-0
      [59]
      S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, M.J. Tang, L.Z. Yang, and G.Z. Qiu, Appropriate titanium slag composition during smelting of vanadium titanomagnetite metallized pellets, Trans. Nonferrous Met. Soc. China, 28(2018), No. 12, p. 2528. doi: 10.1016/S1003-6326(18)64899-X
      [60]
      G.Q. Ma and M. Cheng, Experimental study on preparation of titanium-rich material by pressure leaching of titanium concentrate from titanium dioxide waste acid, Ferroelectrics, 581(2021), No. 1, p. 281. doi: 10.1080/00150193.2021.1903258
      [61]
      J.Y. Xiang, S.L. Liu, X.W. Lv, and C.G. Bai, Preparation of rutile from ilmenite concentrate through pressure leaching with hydrochloric acid, Metall. Mater. Trans. B, 48(2017), No. 2, p. 1333. doi: 10.1007/s11663-016-0885-5
      [62]
      W.L. Nie, S.M. Wen, Q.C. Feng, D. Liu, and Y.W. Zhou, Mechanism and kinetics study of sulfuric acid leaching of titanium from titanium-bearing electric furnace slag, J. Mater. Res. Technol., 9(2020), No. 2, p. 1750. doi: 10.1016/j.jmrt.2019.12.006
      [63]
      C.M. Xiao, Basic Research on Titanium and Iron Separation by Solid State Reduction of Ilmenite [Dissertation], Central South University, Changsha, 2005.
      [64]
      T.J. Bai, W.Z. Ding, X.F. Shang, D.S. Tan, and S.Q. Guo, Research on reduction-rusting process of Panzhihua ilmenite, Iron Steel Vanadium Titanium, 37(2016), No. 4, p. 8.
      [65]
      J. Liu, Development of study on preparation of Ti-rich raw materials for boiling chlorinated from Panzhihua titanium resources, China Nonferrous Metall., 47(2018), No. 6, p. 49.
      [66]
      Y.S. Zhou, G.Z. Qiu, J.F. Jing, F.Q. Zheng, S. Wang, F. Chen, and Y.F. Guo, A novel process for preparation Ti-rich material from modified electric furnace titanium slag by phase deconstruction method, Chin. J. Process Eng., 2021 [2022-03-19]. http://kns.cnki.net/kcms/detail/11.4541.TQ.20210811.0941.002.html
      [67]
      F.Q. Zheng, Y.F. Guo, F. Chen, S. Wang, J.L. Zhang, L.Z. Yang, and G.Z. Qiu, Fluoride leaching of titanium from Ti-bearing electric furnace slag in [NH4+]–[F] solution, Metals, 11(2021), No. 8, art. No. 1176. doi: 10.3390/met11081176
      [68]
      P.H. Wang, Q.Y. Yi, M.Y. Xing, and J.L. Zhang, Selective synthesis of TiO2 single nanocrystals and titanate nanotubes: A controllable atomic arrangement approach via NH4TiOF3 mesocrystals, Phys. Chem. Chem. Phys., 17(2015), No. 34, p. 21982. doi: 10.1039/C5CP03449C
      [69]
      H. Yang, P.F. Gao, X.G. Fan, H.W. Li, Z.C. Sun, H. Li, L.G. Guo, M. Zhan, and Y.L. Liu, Some advances in plastic forming technologies of titanium alloys, Procedia Eng., 81(2014), p. 44. doi: 10.1016/j.proeng.2014.09.127
      [70]
      F.Y. Zhou, China can take the road of steel and titanium co-existence, China Nonferrous Metals News, 2002-12-05 [2022-3-19]. https://jz.docin.com/p-722898413.html
      [71]
      B. Ma, Combination of steel and titanium innovation model will achieve low-cost manufacturing of titanium alloy, Science and Technology Daily, 2016-10-10 [2022-3-19]. https://finance.huanqiu.com/article/9CaKrnJXYlp
      [72]
      T.X. Pan, Giving Full Play to the Advantages of Steel–Titanium Combination: The Titanium Alloy Project of the National Key Research and Development Program of China was launched to Strengthen and Consolidate the Titanium Industry, China Nonferrous Metals Network, 2016-9-29 [2022-3-19]. https://www.cnmn.com.cn/ShowNews1.aspx?id=357783
      [73]
      Y. Chen, The Combination of Titanium and Steel Makes the Large-Scale Success of the Titanium Lenient Plate Industry Chain of Xingsheng Titanium, 2018-5-22 [2022-3-19]. https://www.sotai.cn/news/show-7342.html
      [74]
      X.L. Meng and Y.H. Wang, “Steel–Titanium Joint Model” Creates International Advanced Level: Panzhihua Steel Co., Ltd. Has Realized the Industrialization of Key Technology of Pure Titanium Coil Hot Rolling, China Nonferrous Metals Network, 2015-9-18 [2022-3-19]. https://www.cnmn.com.cn/ShowNews1.aspx?id=326958
      [75]
      H. Jia, F.S. Lu, and B. Hao, Report on China Titanium Industry Progress in 2018, Titanium Ind. Prog., 36(2019), No. 3, p. 42.
      [76]
      H. Jia, F.S. Lu, and B. Hao, Report on China titanium industry progress in 2019, Titanium Ind. Prog., 37(2020), No. 3, p. 33.
      [77]
      J. Zhang, Optimization technology of titanium processing material forming based on dynamic control, World Nonferrous Met., 2015, No. 10, p. 66.

    Catalog


    • /

      返回文章
      返回