Cite this article as: |
Xiaojia Yang, Jike Yang, Ying Yang, Qing Li, Di Xu, Xuequn Cheng, and Xiaogang Li, Data-mining and atmospheric corrosion resistance evaluation of Sn- and Sb-additional low alloy steel based on big data technology, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 825-835. https://doi.org/10.1007/s12613-022-2457-9 |
杨小佳 E-mail: yangxiaojia@ustb.edu.cn
李晓刚 E-mail: lixiaogang99@263.net
[1] |
J.H. Jia, X.Q. Cheng, X.J. Yang, X.G. Li, and W. Li, A study for corrosion behavior of a new-type weathering steel used in harsh marine environment, Constr. Build. Mater., 259(2020), art. No. 119760. doi: 10.1016/j.conbuildmat.2020.119760
|
[2] |
S. Raffo, I. Vassura, C. Chiavari, C. Martini, M.C. Bignozzi, F. Passarini, and E. Bernardi, Weathering steel as a potential source for metal contamination: Metal dissolution during 3-year of field exposure in a urban coastal site, Environ. Pollut., 213(2016), p. 571. doi: 10.1016/j.envpol.2016.03.001
|
[3] |
P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), 7, p. 1112. doi: 10.1007/s12613-021-2308-0
|
[4] |
J.H. Jia, Z.Y. Liu, X.Q. Cheng, C.W. Du, and X.G. Li, Development and optimization of Ni-advanced weathering steel: A review, Corros. Commun., 2(2021), p. 82. doi: 10.1016/j.corcom.2021.09.003
|
[5] |
Q. Li, X.J. Xia, Z.B. Pei, X.Q. Cheng, D.W. Zhang, K. Xiao, J. Wu, and X.G. Li, Long-term corrosion monitoring of carbon steels and environmental correlation analysis via the random forest method, NPJ Mater. Degrad., 6(2022), art. No. 1. doi: 10.1038/s41529-021-00211-3
|
[6] |
L. Wang, C. F. Dong, C. Man, Y.B. Hu, Q. Yu, and X.G. Li, Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review, Int. J. Miner. Metall. Mater., 28(2021), 5, p. 754. doi: 10.1007/s12613-020-2242-6
|
[7] |
K.B. Tayyab, A. Farooq, A.A. Alvi, A.B. Nadeem, and K.M. Deen, Corrosion behavior of cold-rolled and post heat-treated 316L stainless steel in 0.9wt% NaCl solution, Int. J. Miner. Metall. Mater., 28(2021), 3, p. 440. doi: 10.1007/s12613-020-2054-8
|
[8] |
J. Ma, F. Feng, B.Q. Yu, H.F. Chen, and L.F. Fan, Effect of cooling temperature on the microstructure and corrosion behavior of X80 pipeline steel, Int. J. Miner. Metall. Mater., 27(2020), p. 347. doi: 10.1007/s12613-019-1882-x
|
[9] |
E.D. Fan, S.Q. Zhang, D.H. Xie, Q.Y. Zhao, X.G. Li, and Y.H. Huang, Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel, Int. J. Miner. Metall. Mater., 28(2021), p. 249. doi: 10.1007/s12613-020-2167-0
|
[10] |
Y. Yang, X.Q. Cheng, J.B. Zhao, Y. Fan, and X.G. Li, A study of rust layer of low alloy structural steel containing 0.1 % Sb in atmospheric environment of the Yellow Sea in China, Corros. Sci., 188(2021), art. No. 109549. doi: 10.1016/j.corsci.2021.109549
|
[11] |
National Science and Technology Council (US), Materials Genome Initiative for Global Competitiveness, USA, 2011.
|
[12] |
X.G. Li, D.W. Zhang, Z.Y. Liu, Z. Li, C.W. Du, and C.F. Dong, Materials science: Share corrosion data, Nature, 527(2015), No. 7579, p. 441. doi: 10.1038/527441a
|
[13] |
X.J. Yang, Y. Yang, M.H. Sun, J.H. Jia, X.Q. Cheng, Z.B. Pei, Q. Li, D. Xu, K. Xiao, and X.G. Li, A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology, J. Mater. Sci. Technol., 104(2022), p. 67. doi: 10.1016/j.jmst.2021.05.086
|
[14] |
Y.J. Zhi, Z.H. Jin, L. Lu, T. Yang, D.Y. Zhou, Z.B. Pei, D.Q. Wu, D.M. Fu, D.W. Zhang, and X.G. Li, Improving atmospheric corrosion prediction through key environmental factor identification by random forest-based model, Corros. Sci., 178(2021), art. No. 109084. doi: 10.1016/j.corsci.2020.109084
|
[15] |
X.J. Yang, M.H. Liu, Z.Y. Liu, C.W. Du, and X.G. Li, Failure analysis of a 304 stainless steel heat exchanger in liquid sulfur recovery units, Eng. Fail. Anal., 116(2020), art. No. 104729. doi: 10.1016/j.engfailanal.2020.104729
|
[16] |
X.J. Yang, J.M. Shao, Z.Y. Liu, D.W. Zhang, L.Y. Cui, C.W. Du, and X.G. Li, Stress-assisted microbiologically influenced corrosion mechanism of 2205 duplex stainless steel caused by sulfate-reducing bacteria, Corros. Sci., 173(2020), art. No. 108746. doi: 10.1016/j.corsci.2020.108746
|
[17] |
X.J. Yang, C.W. Du, H.X. Wan, Z.Y. Liu, and X.G. Li, Influence of sulfides on the passivation behavior of titanium alloy TA2 in simulated seawater environments, Appl. Surf. Sci., 458(2018), p. 198. doi: 10.1016/j.apsusc.2018.07.068
|
[18] |
T.G. Dietterich, Machine-learning research, AI Mag., 18(1997), No. 4, p. 97. doi: 10.1609/aimag.v18i4.1324
|
[19] |
J. R and B. P, PIANO: A fast parallel iterative algorithm for multinomial and sparse multinomial logistic regression, Signal Process., 194(2022), art. No. 108459. doi: 10.1016/j.sigpro.2022.108459
|
[20] |
D. Ramos, P. Faria, A. Morais, and Z. Vale, Using decision tree to select forecasting algorithms in distinct electricity consumption context of an office building, Energy Rep., 8(2022), p. 417. doi: 10.1016/j.egyr.2022.01.046
|
[21] |
F. Camastra, V. Capone, A. Ciaramella, A. Riccio, and A. Staiano, Prediction of environmental missing data time series by Support Vector Machine Regression and Correlation Dimension estimation, Environ. Modell. Softw., 150(2022), art. No. 105343. doi: 10.1016/j.envsoft.2022.105343
|
[22] |
H. Li, J.J. Lin, X.B. Lei, and T.X. Wei, Compressive strength prediction of basalt fiber reinforced concrete via random forest algorithm, Mater. Today Commun., 30(2022), art. No. 103117. doi: 10.1016/j.mtcomm.2021.103117
|
[23] |
A.S. Mohammad and M.R. Pradhan, Machine learning with big data analytics for cloud security, Comput. Electr. Eng., 96(2021), art. No. 107527. doi: 10.1016/j.compeleceng.2021.107527
|
[24] |
V. Díaz and C. López, Discovering key meteorological variables in atmospheric corrosion through an artificial neural network model, Corros. Sci., 49(2007), No. 3, p. 949. doi: 10.1016/j.corsci.2006.06.023
|
[25] |
Z.B. Pei, D.W. Zhang, Y.J. Zhi, T. Yang, L.L. Jin, D.M. Fu, X.Q. Cheng, H.A. Terryn, J.M.C. Mol, and X.G. Li, Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning, Corros. Sci., 170(2020), art. No. 108697. doi: 10.1016/j.corsci.2020.108697
|
[26] |
P.P. Sai, T.M.B.R. Balu, R.V. Vignesh, C.V.B. Sastry, and R. Padmanaban, Artificial neural network models for predicting the corrosion behavior of friction stir processed AA5083, Mater. Today Proc., 46(2021), p. 7215. doi: 10.1016/j.matpr.2020.12.340
|
[27] |
S.F. Fang, M.P. Wang, W.H. Qi, and F. Zheng, Hybrid genetic algorithms and support vector regression in forecasting atmospheric corrosion of metallic materials, Comput. Mater. Sci., 44(2008), No. 2, p. 647. doi: 10.1016/j.commatsci.2008.05.010
|
[28] |
Y.J. Lv, J.W. Wang, J.L. Wang, C. Xiong, L. Zou, L. Li, and D.W. Li, Steel corrosion prediction based on support vector machines, Chaos Solitons Fractals, 136(2020), art. No. 109807. doi: 10.1016/j.chaos.2020.109807
|
[29] |
R. Genuer, J.M. Poggi, C. Tuleau-Malot, and N. Villa-Vialaneix, Random forests for big data, Big Data Res., 9(2017), p. 28. doi: 10.1016/j.bdr.2017.07.003
|
[30] |
V.R.S. Mani, A. Saravanaselvan, and N. Arumugam, Performance comparison of CNN, QNN and BNN deep neural networks for real-time object detection using ZYNQ FPGA node, Microelectron. J., 119(2022), art. No. 105319. doi: 10.1016/j.mejo.2021.105319
|
[31] |
Z.B. Pei, X.Q. Cheng, X.J. Yang, Q. Li, C.H. Xia, D.W. Zhang, and X.G. Li, Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors, J. Mater. Sci. Technol., 64(2021), p. 214. doi: 10.1016/j.jmst.2020.01.023
|
[32] |
D. Mizuno, S. Suzuki, S. Fujita, and N. Hara, Corrosion monitoring and materials selection for automotive environments by using Atmospheric Corrosion Monitor (ACM) sensor, Corros. Sci., 83(2014), p. 217. doi: 10.1016/j.corsci.2014.02.020
|
[33] |
Y.H. Jin, M.Y. Ha, S.H. Jeon, Y.S. Jeong, and J.H. Ahn, Evaluation of corrosion conditions for the steel box members by corrosion monitoring exposure test, Constr. Build. Mater., 258(2020), art. No. 120195. doi: 10.1016/j.conbuildmat.2020.120195
|
[34] |
Z.G. Shang, T. Deng, J.Q. He, and X.H. Duan, A novel model for hourly PM2.5 concentration prediction based on CART and EELM, Sci. Total Environ., 651(2019), p. 3043. doi: 10.1016/j.scitotenv.2018.10.193
|
[35] |
D.H. Lee, S.H. Kim, and K.J. Kim, Multistage MR-CART: Multiresponse optimization in a multistage process using a classification and regression tree method, Comput. Ind. Eng., 159(2021), art. No. 107513. doi: 10.1016/j.cie.2021.107513
|
[36] |
J.S. Suh, B.C. Suh, S.E. Lee, J.H. Bae, and B.G. Moon, Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg–Al–Zn alloys through machine learning, J. Mater. Sci. Technol., 107(2022), p. 52. doi: 10.1016/j.jmst.2021.07.045
|