Cite this article as: |
Sheng Li, Yimin Zhang, Yizhong Yuan, and Pengcheng Hu, An insight on the mechanism of efficient leaching of vanadium from vanadium shale induced by microwave-generated hot spots, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 293-302. https://doi.org/10.1007/s12613-022-2459-7 |
张一敏 E-mail: zym126135@126.com
[1] |
Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109(2011), No. 1-2, p. 116. doi: 10.1016/j.hydromet.2011.06.002
|
[2] |
J.P. Gustafsson, Vanadium geochemistry in the biogeosphere-speciation, solid-solution interactions, and ecotoxicity, Appl. Geochem., 102(2019), p. 1. doi: 10.1016/j.apgeochem.2018.12.027
|
[3] |
E. del Carpio, L. Hernández, C. Ciangherotti, et al., Vanadium: History, chemistry, interactions with α-amino acids and potential therapeutic applications, Coord. Chem. Rev., 372(2018), p. 117. doi: 10.1016/j.ccr.2018.06.002
|
[4] |
P.C. Hu, Y.M. Zhang, T. Liu, J. Huang, Y.Z. Yuan, and Q.S. Zheng, Highly selective separation of vanadium over iron from stone coal by oxalic acid leaching, J. Ind. Eng. Chem., 45(2017), p. 241. doi: 10.1016/j.jiec.2016.09.029
|
[5] |
B. Chen, S.X. Bao, Y.M. Zhang, and S. Li, A high-efficiency and sustainable leaching process of vanadium from shale in sulfuric acid systems enhanced by ultrasound, Sep. Purif. Technol., 240(2020), art. No. 116624. doi: 10.1016/j.seppur.2020.116624
|
[6] |
Y.Z. Yuan, Y.M. Zhang, T. Liu, P.C. Hu, and Q.S. Zheng, Optimization of microwave roasting-acid leaching process for vanadium extraction from shale via response surface methodology, J. Cleaner. Prod., 234(2019), p. 494. doi: 10.1016/j.jclepro.2019.06.271
|
[7] |
Y.Z. Yuan, Y.M. Zhang, T. Liu, T.J. Chen, and J. Huang, Source separation of V and Fe by two-stage selective leaching during V extraction from stone coal, RSC Adv., 7(2017), No. 30, p. 18438. doi: 10.1039/C7RA01154G
|
[8] |
B. Chen, S.X. Bao, and Y.M. Zhang, Synergetic strengthening mechanism of ultrasound combined with calcium fluoride towards vanadium extraction from low-grade vanadium-bearing shale, Int. J. Min. Sci. Technol., 31(2021), No. 6, p. 1095. doi: 10.1016/j.ijmst.2021.07.008
|
[9] |
M.T. Li, C. Wei, G. Fan, H.L. Wu, C.X. Li, and X.B. Li, Acid leaching of black shale for the extraction of vanadium, Int. J. Miner. Process., 95(2010), No. 1-4, p. 62. doi: 10.1016/j.minpro.2010.04.002
|
[10] |
M.Y. Wang, L.S. Xiao, Q.G. Li, X.W. Wang, and X.Y. Xiang, Leaching of vanadium from stone coal with sulfuric acid, Rare Met., 28(2009), No. 1, p. 1. doi: 10.1007/s12598-009-0001-y
|
[11] |
B. Zhang, Z.G. Gao, H.Z. Liu, W. Wang, and Y.H. Cao, Direct acid leaching of vanadium from stone coal, High Temp. Mater. Process., 36(2017), No. 9, p. 877. doi: 10.1515/htmp-2016-0055
|
[12] |
X.Y. Zhang, K. Yang, X.D. Tian, and W.Q. Qin, Vanadium leaching from carbonaceous shale using fluosilicic acid, Int. J. Miner. Process., 100(2011), No. 3-4, p. 184. doi: 10.1016/j.minpro.2011.04.013
|
[13] |
A.M. Elmahdy, M. Farahat, and T. Hirajima, Comparison between the effect of microwave irradiation and conventional heat treatments on the magnetic properties of chalcopyrite and pyrite, Adv. Powder Technol., 27(2016), No. 6, p. 2424. doi: 10.1016/j.apt.2016.08.020
|
[14] |
Z. Moravvej, A. Mohebbi, and S. Daneshpajouh, The microwave irradiation effect on copper leaching from sulfide/oxide ores, Mater. Manuf. Process., 33(2018), No. 1, p. 1. doi: 10.1080/10426914.2016.1244850
|
[15] |
T. Le, X.T. Li, A.V. Ravindra, Q. Wang, J.H. Peng, and S.H. Ju, Leaching behavior of contaminant metals from spent FCC catalyst under microwave irradiation, Mater. Res. Express, 6(2018), No. 3, art. No. 035509. doi: 10.1088/2053-1591/aaf529
|
[16] |
L. Guo, J.R. Lan, Y.G. Du, T.C. Zhang, and D.Y. Du, Microwave-enhanced selective leaching of arsenic from copper smelting flue dusts, J. Hazard. Mater., 386(2020), art. No. 121964. doi: 10.1016/j.jhazmat.2019.121964
|
[17] |
T. Wen, Y.L. Zhao, Q.H. Xiao, et al., Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy, Results Phys., 7(2017), p. 2594. doi: 10.1016/j.rinp.2017.07.035
|
[18] |
L.Y. Zhang, J.M. Mo, X.H. Li, L.P. Pan, and G.T. Wei, Leaching reaction and kinetics of zinc from indium-bearing zinc ferrite under microwave heating, Russ. J. Non-Ferrous Met., 57(2016), No. 4, p. 301. doi: 10.3103/S1067821216040143
|
[19] |
J.P. Wang, Y.M. Zhang, J. Huang, and T. Liu, Synergistic effect of microwave irradiation and CaF2 on vanadium leaching, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 156. doi: 10.1007/s12613-017-1390-9
|
[20] |
J.P. Wang, Y.M. Zhang, J. Huang, and T. Liu, Efficient microwave irradiation-assisted hydrothermal synthesis of ammonium vanadate flake, Cryst. Res. Technol., 52(2017), No. 12, art. No. 1700104. doi: 10.1002/crat.201700104
|
[21] |
X. Qiao and X.Y. Xie, The effect of electric field intensification at interparticle contacts in microwave sintering, Sci. Reports, 6(2016), art. No. 32163. doi: 10.1038/srep32163
|
[22] |
T. Ebadzadeh, Effect of mechanical activation and microwave heating on synthesis and sintering of nano-structured mullite, J. Alloys Compd., 489(2010), No. 1, p. 125. doi: 10.1016/j.jallcom.2009.09.030
|
[23] |
X.F. Zhang, F.G. Liu, X.X. Xue, and T. Jiang, Effects of microwave and conventional blank roasting on oxidation behavior, microstructure and surface morphology of vanadium slag with high chromium content, J. Alloys Compd., 686(2016), p. 356. doi: 10.1016/j.jallcom.2016.06.038
|
[24] |
A.J. Teng and X.X. Xue, A novel roasting process to extract vanadium and chromium from high chromium vanadium slag using a NaOH–NaNO3 binary system, J. Hazard. Mater, 379(2019), art. No. 120805. doi: 10.1016/j.jhazmat.2019.120805
|
[25] |
H.Y. Gao, T. Jiang, M. Zhou, J. Wen, X. Li, Y. Wang, and X.X. Xue, Effect of microwave irradiation and conventional calcification roasting with calcium hydroxide on the extraction of vanadium and chromium from high-chromium vanadium slag, Miner. Eng., 145(2020), art. No. 106056. doi: 10.1016/j.mineng.2019.106056
|
[26] |
Y.Z. Yuan, Y.M. Zhang, T. Liu, T.J. Chen, and J. Huang, Comparison of microwave and conventional blank roasting and of their effects on vanadium oxidation in stone coal, J. Microwave Power Electromagn. Energy, 50(2016), No. 2, p. 81. doi: 10.1080/08327823.2016.1190145
|
[27] |
Y.Z. Yuan, Y.M. Zhang, T. Liu, and T.J. Chen, Comparison of the mechanisms of microwave roasting and conventional roasting and of their effects on vanadium extraction from stone coal, Int. J. Miner. Metall. Mater., 22(2015), No. 5, p. 476. doi: 10.1007/s12613-015-1096-9
|
[28] |
E.A. Olevsky, A.L. Maximenko, and E.G. Grigoryev, Ponderomotive effects during contact formation in microwave sintering, Modelling Simul. Mater. Sci. Eng., 21(2013), No. 5, art. No. 055022. doi: 10.1088/0965-0393/21/5/055022
|
[29] |
K.I. Rybakov, E.A. Olevsky, and V.E. Semenov, The microwave ponderomotive effect on ceramic sintering, Scripta Mater., 66(2012), No. 12, p. 1049. doi: 10.1016/j.scriptamat.2012.02.043
|
[30] |
S.A. Freeman, J.H. Booske, and R.F. Cooper, Microwave field enhancement of charge transport in sodium chloride, Phys. Rev. Lett., 74(1995), No. 11, p. 2042. doi: 10.1103/PhysRevLett.74.2042
|
[31] |
D. Demirskyi, D. Agrawal, and A. Ragulya, Neck growth kinetics during microwave sintering of copper, Scripta Mater., 62(2010), No. 8, p. 552. doi: 10.1016/j.scriptamat.2009.12.036
|
[32] |
X. Wang, D.J. Yang, C. Srinivasakannan, J.H. Peng, X.H. Duan, and S.H. Ju, A comparison of the conventional and ultrasound-augmented leaching of zinc residue using sulphuric acid, Arab. J. Sci. Eng., 39(2014), No. 1, p. 163. doi: 10.1007/s13369-013-0835-3
|
[33] |
J.Y. Xiang, Q.Y. Huang, X.W. Lv, and C.G. Bai, Extraction of vanadium from converter slag by two-step sulfuric acid leaching process, J. Clean. Prod., 170(2018), p. 1089. doi: 10.1016/j.jclepro.2017.09.255
|
[34] |
J.Y. Xiang, Q.Y. Huang, X.W. Lv, and C.G. Bai, Effect of mechanical activation treatment on the recovery of vanadium from converter slag, Metall. Mater. Trans. B, 48(2017), No. 5, p. 2759. doi: 10.1007/s11663-017-1033-6
|
[35] |
Q.W. Yang, Z.M. Xie, H. Peng, Z.H. Liu, and C.Y. Tao, Leaching of vanadium and chromium from converter vanadium slag intensified with surface wettability, J. Central South Univ., 25(2018), No. 6, p. 1317. doi: 10.1007/s11771-018-3828-2
|
[36] |
J.P. Wang, Y.M. Zhang, J. Huang, and T. Liu, Kinetic and mechanism study of vanadium acid leaching from black shale using microwave heating method, JOM, 70(2018), No. 6, p. 1031. doi: 10.1007/s11837-018-2859-3
|
[37] |
F. Wang, Y.M. Zhang, J. Huang, et al., Mechanisms of aid-leaching reagent calcium fluoride in the extracting vanadium processes from stone coal, Rare Met., 32(2013), No. 1, p. 57. doi: 10.1007/s12598-013-0013-5
|
[38] |
J. Sun, W.L. Wang, Q.Y. Yue, et al., Review on microwave-metal discharges and their applications in energy and industrial processes, Appl. Energy, 175(2016), p. 141. doi: 10.1016/j.apenergy.2016.04.091
|
[39] |
J.Y. Zhu, L.P. Yi, Z.Z. Yang, and M. Duan, Three-dimensional numerical simulation on the thermal response of oil shale subjected to microwave heating, Chem. Eng. J., 407(2021), art. No. 127197. doi: 10.1016/j.cej.2020.127197
|