留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(6)

数据统计

分享

计量
  • 文章访问数:  4576
  • HTML全文浏览量:  200
  • PDF下载量:  71
  • 被引次数: 0
Xiaoyuan Yuan, Yuan Wu, Xiongjun Liu, Hui Wang, Suihe Jiang,  and Zhaoping Lü, Revealing the role of local shear strain partition of transformable particles in a TRIP-reinforced bulk metallic glass composite via digital image correlation, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 807-813. https://doi.org/10.1007/s12613-022-2460-1
Cite this article as:
Xiaoyuan Yuan, Yuan Wu, Xiongjun Liu, Hui Wang, Suihe Jiang,  and Zhaoping Lü, Revealing the role of local shear strain partition of transformable particles in a TRIP-reinforced bulk metallic glass composite via digital image correlation, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 807-813. https://doi.org/10.1007/s12613-022-2460-1
引用本文 PDF XML SpringerLink
研究论文

通过数字图像相关技术揭示在TRIP增强块体金属玻璃复合材料中可变形颗粒的局部剪切应变分配的作用

  • 通讯作者:

    吴渊    E-mail: wuyuan@ustb.edu.cn

文章亮点

  • (1) 本文将数字图像相关(DIC)技术应用到对非晶复合材料变形过程的动态研究。
  • (2) 系统及动态地研究了TRIP增强块体金属玻璃复合材料在变形过程中局部应变的演变及分配的过程。
  • (3) 结合应变的动态演变,系统总结了可变形颗粒的局部剪切应变分配对块体金属玻璃复合材料的加工硬化和塑性提升的作用。
  • 采用数字图像相关(digital image correlation, DIC)技术研究了形变诱导塑性(transformation-induced plasticity, TRIP)增强的块体金属玻璃(bulk metallic glass, BMG)复合材料中亚稳奥氏体晶相与非晶基体在压缩载荷下的耦合效应。通过DIC的动态记录的特性,直接监测了晶体相和非晶态基体中局部应变场的演化。通过对局部应变场的分析和计算,揭示了亚稳态奥氏体相变对TRIP增强BMG复合材料的贡献。在变形过程中,亚稳态奥氏体优先于非晶基体相变形,且应力导致的亚稳态奥氏体的马氏体相变能有效地消耗局部剪切应变,使晶体相和非晶相的界面处的局部应变/应力集中得到缓解,延缓了变形过程中界面处裂纹的萌生和拓展,从而大大提高了TRIP增强BMG复合材料的塑性和加工硬化能力。我们的研究有助于深入理解变形过程中非晶基体和亚稳晶体相之间的相互作用机制,为进一步提升BMG复合材料的性能设计提供依据。
  • Research Article

    Revealing the role of local shear strain partition of transformable particles in a TRIP-reinforced bulk metallic glass composite via digital image correlation

    + Author Affiliations
    • The coupling effects of the metastable austenitic phase and the amorphous matrix in a transformation-induced plasticity (TRIP)-reinforced bulk metallic glass (BMG) composite under compressive loading were investigated by employing the digital image correlation (DIC) technique. The evolution of local strain field in the crystalline phase and the amorphous matrix was directly monitored, and the contribution from the phase transformation of the metastable austenitic phase was revealed. Local shear strain was found to be effectively consumed by the displacive phase transformation of the metastable austenitic phase, which relaxed the local strain/stress concentration at the interface and thus greatly enhanced the plasticity of the TRIP-reinforced BMG composites. Our current study sheds light on in-depth understanding of the underlying deformation mechanism and the interplay between the amorphous matrix and the metastable crystalline phase during deformation, which is helpful for design of advanced BMG composites with further improved properties.
    • loading
    • [1]
      W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci., 57(2012), No. 3, p. 487. doi: 10.1016/j.pmatsci.2011.07.001
      [2]
      C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Mater., 55(2007), No. 12, p. 4067. doi: 10.1016/j.actamat.2007.01.052
      [3]
      Y. Yang, J.C. Ye, J. Lu, Y.F. Gao, and P.K. Liaw, Metallic glasses: Gaining plasticity for microsystems, JOM, 62(2010), No. 2, p. 93. doi: 10.1007/s11837-010-0039-1
      [4]
      Y.W. Wang, M. Li, and J.W. Xu, Toughen and harden metallic glass through designing statistical heterogeneity, Scripta Mater., 113(2016), p. 10. doi: 10.1016/j.scriptamat.2015.09.038
      [5]
      Z.F. Zhang, J. Eckert, and L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass, Acta Mater., 51(2003), No. 4, p. 1167. doi: 10.1016/S1359-6454(02)00521-9
      [6]
      D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson, Designing metallic glass matrix composites with high toughness and tensile ductility, Nature, 451(2008), No. 7182, p. 1085. doi: 10.1038/nature06598
      [7]
      Y. Wu, Y.H. Xiao, G.L. Chen, C.T. Liu, and Z.P. Lu, Bulk metallic glass composites with transformation-mediated work-hardening and ductility, Adv. Mater., 22(2010), No. 25, p. 2770. doi: 10.1002/adma.201000482
      [8]
      P. Gargarella, S. Pauly, K.K. Song, J. Hu, N.S. Barekar, M.S. Khoshkhoo, A. Teresiak, H. Wendrock, U. Kühn, C. Ruffing, E. Kerscher, and J. Eckert, Ti−Cu−Ni shape memory bulk metallic glass composites, Acta Mater., 61(2013), No. 1, p. 151. doi: 10.1016/j.actamat.2012.09.042
      [9]
      Z.Y. Zhang, Y. Wu, J. Zhou, W.L. Song, D. Cao, H. Wang, X.J. Liu, and Z.P. Lu, Effects of Sn addition on phase formation and mechanical properties of TiCu-based bulk metallic glass composites, Intermetallics, 42(2013), p. 68. doi: 10.1016/j.intermet.2013.05.009
      [10]
      F.F. Wu, K.C. Chan, S.H. Chen, S.S. Jiang, and G. Wang, ZrCu-based bulk metallic glass composites with large strain-hardening capability, Mater. Sci. Eng. A, 636(2015), p. 502. doi: 10.1016/j.msea.2015.04.027
      [11]
      Y. Wu, H. Wang, H.H. Wu, Z.Y. Zhang, X.D. Hui, G.L. Chen, D. Ma, X.L. Wang, and Z.P. Lu, Formation of Cu–Zr–Al bulk metallic glass composites with improved tensile properties, Acta Mater., 59(2011), No. 8, p. 2928. doi: 10.1016/j.actamat.2011.01.029
      [12]
      W.L. Song, Y. Wu, H. Wang, X.J. Liu, H.W. Chen, Z.X. Guo, and Z.P. Lu, Microstructural control via copious nucleation manipulated by in situ formed nucleants: Large-sized and ductile metallic glass composites, Adv. Mater., 28(2016), No. 37, p. 8156. doi: 10.1002/adma.201601954
      [13]
      S. Pauly, G. Liu, G. Wang, U. Kühn, N. Mattern, and J. Eckert, Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites, Acta Mater., 57(2009), No. 18, p. 5445. doi: 10.1016/j.actamat.2009.07.042
      [14]
      C.P. Kim, Y.S. Oh, S. Lee, and N.J. Kim, Realization of high tensile ductility in a bulk metallic glass composite by the utilization of deformation-induced martensitic transformation, Scripta Mater., 65(2011), No. 4, p. 304. doi: 10.1016/j.scriptamat.2011.04.037
      [15]
      Y. Wu, D. Ma, Q.K. Li, A.D. Stoica, W.L. Song, H. Wang, X.J. Liu, G.M. Stoica, G.Y. Wang, K. An, X.L. Wang, M. Li, and Z.P. Lu, Transformation-induced plasticity in bulk metallic glass composites evidenced by in situ neutron diffraction, Acta Mater., 124(2017), p. 478. doi: 10.1016/j.actamat.2016.11.029
      [16]
      T.C. Chu, W.F. Ranson, and M.A. Sutton, Applications of digital-image-correlation techniques to experimental mechanics, Exp. Mech., 25(1985), No. 3, p. 232. doi: 10.1007/BF02325092
      [17]
      N. Li, M.A. Sutton, X. Li, and H.W. Schreier, Full-field thermal deformation measurements in a scanning electron microscope by 2D digital image correlation, Exp. Mech., 48(2008), No. 5, p. 635. doi: 10.1007/s11340-007-9107-z
      [18]
      B. Pan, K.M. Qian, H.M. Xie, and A. Asundi, Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review, Meas. Sci. Technol., 20(2009), No. 6, art. No. 062001. doi: 10.1088/0957-0233/20/6/062001
      [19]
      P. Bing, Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals, Meas. Sci. Technol., 29(2018), No. 8, art. No. 082001. doi: 10.1088/1361-6501/aac55b
      [20]
      J. Zhang, P. Aimedieu, F. Hild, S. Roux, and T. Zhang, Complexity of shear localization in a Zr-based bulk metallic glass, Scripta Mater., 61(2009), No. 12, p. 1145. doi: 10.1016/j.scriptamat.2009.08.041
      [21]
      Y. Wu, H. Bei, Y.L. Wang, Z.P. Lu, E.P. George, and Y.F. Gao, Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass, Int. J. Plast., 71(2015), p. 136. doi: 10.1016/j.ijplas.2015.05.006
      [22]
      S.H. Hong, J.T. Kim, H.J. Park, J.Y. Suh, K.R. Lim, Y.S. Na, J.M. Park, and K.B. Kim, Work-hardening and plastic deformation behavior of Ti-based bulk metallic glass composites with bimodal sized B2 particles, Intermetallics, 62(2015), p. 36. doi: 10.1016/j.intermet.2015.03.005
      [23]
      M.W. Chen, Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility, Annu. Rev. Mater. Res., 38(2008), p. 445. doi: 10.1146/annurev.matsci.38.060407.130226
      [24]
      D. Schryvers, G.S. Firstov, J.W. Seo, J.V. Humbeeck, and Y.N. Koval, Unit cell determination in CuZr martensite by electron microscopy and X-ray diffraction, Scripta Mater., 36(1997), No. 10, p. 1119. doi: 10.1016/S1359-6462(97)00003-1
      [25]
      J.W. Seo and D. Schryvers, TEM investigation of the microstructure and defects of CuZr martensite. Part I: Morphology and twin systems, Acta Mater., 46(1998), No. 4, p. 1165. doi: 10.1016/S1359-6454(97)00333-9
      [26]
      A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater., 48(2000), No. 1, p. 279. doi: 10.1016/S1359-6454(99)00300-6

    Catalog


    • /

      返回文章
      返回