留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 5
Apr.  2022

图(16)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2877
  • HTML全文浏览量:  1443
  • PDF下载量:  195
  • 被引次数: 0
Mei Yang, Ruyi Bi, Jiangyan Wang, Ranbo Yu,  and Dan Wang, Decoding lithium batteries through advanced in situcharacterization techniques, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 965-989. https://doi.org/10.1007/s12613-022-2461-0
Cite this article as:
Mei Yang, Ruyi Bi, Jiangyan Wang, Ranbo Yu,  and Dan Wang, Decoding lithium batteries through advanced in situcharacterization techniques, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 965-989. https://doi.org/10.1007/s12613-022-2461-0
引用本文 PDF XML SpringerLink
特约综述

先进原位表征技术解码锂电池

  • 通讯作者:

    王江艳    E-mail: jywang@ipe.ac.cn

    于然波    E-mail: ranboyu@ustb.edu.cn

    王丹    E-mail: danwang@ipe.ac.cn

文章亮点

  • (1) 系统介绍了锂电池原位表征技术发展现状和重要进展。
  • (2) 探讨了原位多模态耦合表征技术的进展、特征和意义。
  • (3) 总结锂电池原位表征面临的挑战,提出了时空匹配的多模态原位表征技术是未来的发展方向。
  • 现代社会日益增长的能源需求要求开发更高效、更经济的储能系统,锂电池具有高能量密度和长循环寿命,在便携式电子产品、电动汽车等多种领域占据主导地位。锂电池的原位表征不仅能够表征电池关键部件静态信息,更为关键的是能够捕获充放电动态变化中材料电化学行为和多尺度结构演变过程,从而在微观、介观和宏观尺度上将电化学过程与组成、微观形貌、相结构等关联起来,为理解电池失效机制、新材料设计和开发、废旧电池回收利用提供帮助。鉴于这一目标,锂电池原位表征技术和应用取得了巨大进步,包括原位电池装置设计,用于监测电极材料结构和操作条件下的表面/界面化学演变。本文综述了近年来锂电池原位表征的研究进展,在单一原位技术的基础上,重点探讨了多模态耦合表征的特点、现状,虽然多模态耦合还处于起步阶段,但它能更高效地表征锂电池中的多尺度结构和组成演变规律,将成为未来发展的趋势,如何突破不同表征技术时间、空间分辨率的差异,获得时空匹配信息是多模态耦合的关键和难点。基于代表性的电极材料和电解质成分,系统地讨论了原位表征技术如何揭示不同电极体系的电化学过程和基本机理。最后,我们综合分析了锂电池原位表征所面临的挑战,未来的机遇和可能的发展方向,以期推动未来锂电池的发展,加速下一代电池的商业化。
  • Invited Review

    Decoding lithium batteries through advanced in situcharacterization techniques

    + Author Affiliations
    • Given the energy demands of the electromobility market, the energy density and safety of lithium batteries (LBs) need to be improved, whereas its cost needs to be decreased. For the enhanced performance and decreased cost, more suitable electrode and electrolyte materials should be developed based on the improved understanding of the degradation mechanisms and structure–performance correlation in the LB system. Thus, various in situ characterization technologies have been developed during the past decades, providing abundant guidelines on the design of electrode and electrolyte materials. Here we first review the progress of in situ characterization of LBs and emphasize the feature of the multi-model coupling of different characterization techniques. Then, we systematically discuss how in situ characterization technologies reveal the electrochemical processes and fundamental mechanisms of different electrode systems based on representative electrode materials and electrolyte components. Finally, we discuss the current challenges, future opportunities, and possible directions to promote in situ characterization technologies for further improvement of the battery performance.
    • loading
    • [1]
      E. Pomerantseva, F. Bonaccorso, X.L. Feng, Y. Cui, and Y. Gogotsi, Energy storage: The future enabled by nanomaterials, Science, 366(2019), No. 6468, p. 969.
      [2]
      Z.Y. Gu, J.Z. Guo, X.X. Zhao, et al., High-ionicity fluorophosphate lattice via aliovalent substitution as advanced cathode materials in sodium-ion batteries, InfoMat, 3(2021), No. 6, p. 694. doi: 10.1002/inf2.12184
      [3]
      X.X. Luo, W.H. Li, H.J. Liang, et al., Covalent organic framework with highly accessible carbonyls and π-cation effect for advanced potassium-ion batteries, Angew. Chem. Int. Ed., 61(2022), No. 10, art. No. e202117661.
      [4]
      J. Yang, Y.H. Lin, B.S. Guo, et al., Enhanced electrochemical performance of Si/C electrode through surface modification using SrF2 particle, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1621. doi: 10.1007/s12613-021-2270-x
      [5]
      D.C. Lin, Y.Y. Liu, and Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12(2017), No. 3, p. 194. doi: 10.1038/nnano.2017.16
      [6]
      E.H.M. Salhabi, J.L. Zhao, J.Y. Wang, M. Yang, B. Wang, and D. Wang, Hollow multi-shelled structural TiO2–x with multiple spatial confinement for long-life lithium–sulfur batteries, Angew. Chem. Int. Ed., 58(2019), No. 27, p. 9078. doi: 10.1002/anie.201903295
      [7]
      Q. Jiang, W.Q. Zhang, J.C. Zhao, P. H. Rao, and J.F. Mao, Superior sodium and lithium storage in strongly coupled amorphous Sb2S3 spheres and carbon nanotubes, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1194. doi: 10.1007/s12613-021-2259-5
      [8]
      Y.F. Meng, H.J. Liang, C.D. Zhao, et al., Concurrent recycling chemistry for cathode/anode in spent graphite/LiFePO4 batteries: Designing a unique cation/anion-co-workable dual-ion battery, J. Energy Chem., 64(2022), p. 166. doi: 10.1016/j.jechem.2021.04.047
      [9]
      T. Fujita, H. Chen, K.T. Wang, et al., Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 179. doi: 10.1007/s12613-020-2127-8
      [10]
      L.Y. Sun, B.R. Liu, T. Wu, et al., Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 991. doi: 10.1007/s12613-020-2115-z
      [11]
      J. Lu, T. Wu, and K. Amine, State-of-the-art characterization techniques for advanced lithium-ion batteries, Nat. Energy, 2(2017), art. No. 17011. doi: 10.1038/nenergy.2017.11
      [12]
      J. Cui, H.K. Zheng, and K. He, In situ TEM study on conversion-type electrodes for rechargeable ion batteries, Adv. Mater., 33(2021), No. 6, art. No. e2000699. doi: 10.1002/adma.202000699
      [13]
      F. Lin, Y.J. Liu, X.Q. Yu, et al., Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries, Chem. Rev., 117(2017), No. 21, p. 13123. doi: 10.1021/acs.chemrev.7b00007
      [14]
      S.Y. Lang, Y. Shi, Y.G. Guo, D. Wang, R. Wen, and L.J. Wan, Insight into the interfacial process and mechanism in lithium-sulfur batteries: An in situ AFM study, Angew. Chem. Int. Ed., 55(2016), No. 51, p. 15835. doi: 10.1002/anie.201608730
      [15]
      R. Baddour-Hadjean and J.P. Pereira-Ramos, Raman microspectrometry applied to the study of electrode materials for lithium batteries, Chem. Rev., 110(2010), No. 3, p. 1278. doi: 10.1021/cr800344k
      [16]
      R. Tao, J.G. Zhu, Y.F. Zhang, W.L. Song, H.S. Chen, and D.N. Fang, Quantifying the 2D anisotropic displacement and strain fields in graphite-based electrode via in situ scanning electron microscopy and digital image correlation, Extreme Mech. Lett., 35(2020), art. No. 100635. doi: 10.1016/j.eml.2020.100635
      [17]
      S.M. Bak, Z. Shadike, R.Q. Lin, X.Q. Yu, and X.Q. Yang, In situ/operando synchrotron-based X-ray techniques for lithium-ion battery research, NPG Asia Mater., 10(2018), No. 7, p. 563. doi: 10.1038/s41427-018-0056-z
      [18]
      V.R. Rikka, S.R. Sahu, A. Chatterjee, et al., In situ/ex situ investigations on the formation of the mosaic solid electrolyte interface layer on graphite anode for lithium-ion batteries, J. Phys. Chem. C, 122(2018), No. 50, p. 28717. doi: 10.1021/acs.jpcc.8b09210
      [19]
      Y. Yamagishi, H. Morita, Y. Nomura, and E. Igaki, Visualizing lithium distribution and degradation of composite electrodes in sulfide-based all-solid-state batteries using operando time-of-flight secondary ion mass spectrometry, ACS Appl. Mater. Interfaces, 13(2021), No. 1, p. 580. doi: 10.1021/acsami.0c18505
      [20]
      A.I. Freytag, A.D. Pauric, S.A. Krachkovskiy, and G.R. Goward, In situ magic-angle spinning 7Li NMR analysis of a full electrochemical lithium-ion battery using a jelly roll cell design, J. Am. Chem. Soc., 141(2019), No. 35, p. 13758. doi: 10.1021/jacs.9b06885
      [21]
      E.Y. Zhao, Z.G. Zhang, X.Y. Li, L.H. He, X.Q. Yu, H. Li, and F.W. Wang, Neutron-based characterization techniques for lithium-ion battery research, Chin. Phys. B, 29(2020), No. 1, art. No. 018201. doi: 10.1088/1674-1056/ab5d07
      [22]
      Z. Deng, X. Lin, Z.Y. Huang, J.T. Meng, Y. Zhong, G.T. Ma, Y. Zhou, Y. Shen, H. Ding, and Y.H. Huang, Recent progress on advanced imaging techniques for lithium-ion batteries, Adv. Energy Mater., 11(2021), No. 2, art. No. 2000806. doi: 10.1002/aenm.202000806
      [23]
      B.H. Song, G.M. Veith, J. Park, M. Yoon, P.S. Whitfield, M.J. Kirkham, J. Liu, and A. Huq, Metastable Li1+δMn2O4 (0≤δ≤1) spinel phases revealed by in operando neutron diffraction and first-principles calculations, Chem. Mater., 31(2019), No. 1, p. 124. doi: 10.1021/acs.chemmater.8b03199
      [24]
      Y.P. Han, D.J. Chen, S. Ali, C. Feng, F.P. Meng, M. Waqas, and W.D. He, Hierarchical self-supported carbon nanostructure enables superior stability of highly nitrogen-doped anodes, ChemElectroChem, 7(2020), No. 18, p. 3883. doi: 10.1002/celc.202001005
      [25]
      K. Hongyou, T. Hattori, Y. Nagai, T. Tanaka, H. Nii, and K. Shoda, Dynamic in situ Fourier transform infrared measurements of chemical bonds of electrolyte solvents during the initial charging process in a Li ion battery, J. Power Sources, 243(2013), p. 72. doi: 10.1016/j.jpowsour.2013.05.192
      [26]
      F. Rittweger, C. Modrzynski, V. Roscher, D.L. Danilov, P.H.L. Notten, and K.R. Riemschneider, Investigation of charge carrier dynamics in positive lithium-ion battery electrodes via optical in situ observation, J. Power Sources, 482(2021), art. No. 228943. doi: 10.1016/j.jpowsour.2020.228943
      [27]
      H. Wu, D. Zhuo, D. Kong, and Y. Cui, Improving battery safety by early detection of internal shorting with a bifunctional separator, Nat. Commun., 5(2014), art. No. 5193. doi: 10.1038/ncomms6193
      [28]
      Y.C. Hsieh, J.H. Thienenkamp, C.J. Huang et al., Revealing the impact of film-forming electrolyte additives on lithium metal batteries via solid-state NMR/MRI analysis, J. Phys. Chem. C, 125(2021), No. 1, p. 252. doi: 10.1021/acs.jpcc.0c09771
      [29]
      J. Wandt, P. Jakes, J. Granwehr, R.A. Eichel, and H.A. Gasteiger, Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries, Mater. Today, 21(2018), No. 3, p. 231. doi: 10.1016/j.mattod.2017.11.001
      [30]
      R. Sakuma, H. Hashimoto, T. Fujii, J. Takada, N. Hayashi, and M. Takano, In situ Mössbauer analysis of bacterial iron-oxide nano-particles for lithium-ion battery, Hyperfine Interact., 240(2019), No. 1, art. No. 80. doi: 10.1007/s10751-019-1639-y
      [31]
      N. Balke, S. Kalnaus, N.J. Dudney, C. Daniel, S. Jesse, and S.V. Kalinin, Local detection of activation energy for ionic transport in lithium cobalt oxide, Nano Lett., 12(2012), No. 7, p. 3399. doi: 10.1021/nl300219g
      [32]
      A.L. Lipson, R.S. Ginder, and M.C. Hersam, Nanoscale in situ characterization of Li-ion battery electrochemistry via scanning ion conductance microscopy, Adv. Mater., 23(2011), No. 47, p. 5613. doi: 10.1002/adma.201103094
      [33]
      K. Luo, M.R. Roberts, R. Hao, et al., Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen, Nat. Chem., 8(2016), No. 7, p. 684. doi: 10.1038/nchem.2471
      [34]
      J.J. Wang, Y.C.K. Chen-Wiegart, and J. Wang, In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy, Nat. Commun., 5(2014), art. No. 4570. doi: 10.1038/ncomms5570
      [35]
      S. Pérez-Villar, P. Lanz, H. Schneider, and P. Novák, Characterization of a model solid electrolyte interphase/carbon interface by combined in situ Raman/Fourier transform infrared microscopy, Electrochim. Acta, 106(2013), p. 506. doi: 10.1016/j.electacta.2013.05.124
      [36]
      B. Tsuchiya, J. Ohnishi, Y. Sasaki, et al., In situ direct lithium distribution analysis around interfaces in an all-solid-state rechargeable lithium battery by combined ion-beam method, Adv. Mater. Interfaces, 6(2019), No. 14, art. No. 1900100. doi: 10.1002/admi.201900100
      [37]
      J.K. Zhu, H.H. Shen, X.B. Shi, et al., Revealing the chemical and structural evolution of V2O5 nanoribbons in lithium-ion batteries using in situ transmission electron microscopy, Anal. Chem., 91(2019), No. 17, p. 11055. doi: 10.1021/acs.analchem.9b01571
      [38]
      R. Schmidt, H. Fitzek, M. Nachtnebel, C. Mayrhofer, H. Schroettner, and A. Zankel, The combination of electron microscopy, Raman microscopy and energy dispersive X-ray spectroscopy for the investigation of polymeric materials, Macromol. Symp., 384(2019), No. 1, art. No. 1800237. doi: 10.1002/masy.201800237
      [39]
      L.Q. Zhang, T.T. Yang, C.C. Du, et al., Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up, Nat. Nanotechnol., 15(2020), No. 2, p. 94. doi: 10.1038/s41565-019-0604-x
      [40]
      O.J. Borkiewicz, B. Shyam, K.M. Wiaderek, C. Kurtz, P.J. Chupas, and K.W. Chapman, The AMPIX electrochemical cell: A versatile apparatus for in situ X-ray scattering and spectroscopic measurements, J. Appl. Crystallogr., 45(2012), No. 6, p. 1261. doi: 10.1107/S0021889812042720
      [41]
      L. Vitoux, M. Reichardt, S. Sallard, P. Novák, D. Sheptyakov, and C. Villevieille, A cylindrical cell for operando neutron diffraction of Li-ion battery electrode materials, Front. Energy Res., 6(2018), art. No. 76. doi: 10.3389/fenrg.2018.00076
      [42]
      C. Ghanty, B. Markovsky, E.M. Erickson, et al., Li+-ion extraction/insertion of Ni-rich Li1+x(NiyCozMnz)wO2(0.005<x<0.03; y:z = 8:1, w ≈ 1) electrodes: In situ XRD and Raman spectroscopy study, ChemElectroChem, 2(2015), No. 10, p. 1479. doi: 10.1002/celc.201500160
      [43]
      F. Poli, J.S. Kshetrimayum, L. Monconduit, and M. Letellier, New cell design for in situ NMR studies of lithium-ion batteries, Electrochem. Commun., 13(2011), No. 12, p. 1293. doi: 10.1016/j.elecom.2011.07.019
      [44]
      M. Gu, L.R. Parent, B.L. Mehdi, et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes, Nano Lett., 13(2013), No. 12, p. 6106. doi: 10.1021/nl403402q
      [45]
      X. Zhou, T. Li, Y. Cui, Y. Fu, Y. Liu, and L. Zhu, In situ focused ion beam scanning electron microscope study of microstructural evolution of single tin particle anode for Li-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 2, p. 1733. doi: 10.1021/acsami.8b13981
      [46]
      J. Steiger, D. Kramer, and R. Mönig, Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution, Electrochim. Acta, 136(2014), p. 529. doi: 10.1016/j.electacta.2014.05.120
      [47]
      A.M. Tripathi, W.N. Su, and B.J. Hwang, In situ analytical techniques for battery interface analysis, Chem. Soc. Rev., 47(2018), No. 3, p. 736. doi: 10.1039/C7CS00180K
      [48]
      M. Sathiya, G. Rousse, K. Ramesha, et al., Reversible anionic redox chemistry in high-capacity layered-oxide electrodes, Nat. Mater., 12(2013), No. 9, p. 827. doi: 10.1038/nmat3699
      [49]
      P. Lanz, C. Villevieille, and P. Novák, Ex situ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3·(1−x)LiMO2 (M = Ni, Co, Mn), Electrochim. Acta, 130(2014), p. 206. doi: 10.1016/j.electacta.2014.03.004
      [50]
      X. Cao, H.F. Li, Y. Qiao, M. Jia, P. He, J. Cabana, and H.S. Zhou, Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy, Energy Storage Mater., 38(2021), p. 1. doi: 10.1016/j.ensm.2021.02.047
      [51]
      L.N. Zhou, M. Leskes, T. Liu, and C.P. Grey, Probing dynamic processes in lithium-ion batteries by in situ NMR spectroscopy: Application to Li1.08Mn1.92O4 electrodes, Angew. Chem. Int. Ed., 54(2015), No. 49, p. 14782. doi: 10.1002/anie.201507632
      [52]
      W.M. Seong, K.H. Cho, J.W. Park, et al., Controlling residual lithium in high-nickel (>90 %) lithium layered oxides for cathodes in lithium-ion batteries, Angew. Chem. Int. Ed., 59(2020), No. 42, p. 18662. doi: 10.1002/anie.202007436
      [53]
      R. Jung, F. Linsenmann, R. Thomas, et al., Nickel, manganese, and cobalt dissolution from Ni-rich NMC and their effects on NMC622-graphite cells, J. Electrochem. Soc., 166(2019), No. 2, art. No. A378. doi: 10.1149/2.1151902jes
      [54]
      S. Li, Z.P. Yao, J.M. Zheng, et al., Direct observation of defect-aided structural evolution in a nickel-rich layered cathode, Angew. Chem. Int. Ed., 59(2020), No. 49, p. 22092. doi: 10.1002/anie.202008144
      [55]
      L.J. Jia, J. Wang, S.Y. Ren, et al., Unraveling shuttle effect and suppression strategy in lithium/sulfur cells by in situ/operando X-ray absorption spectroscopic characterization, Energy Environ. Mater., 4(2021), No. 2, p. 222. doi: 10.1002/eem2.12152
      [56]
      X.C. Liu, Y. Yang, J.J. Wu, et al., Dynamic hosts for high-performance Li–S batteries studied by cryogenic transmission electron microscopy and in situ X-ray diffraction, ACS Energy Lett., 3(2018), No. 6, p. 1325. doi: 10.1021/acsenergylett.8b00561
      [57]
      J. Conder, R. Bouchet, S. Trabesinger, C. Marino, L. Gubler, and C. Villevieille, Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction, Nat. Energy, 2(2017), No. 6, art. No. 17069. doi: 10.1038/nenergy.2017.69
      [58]
      H.L. Wu, L.A. Huff, and A.A. Gewirth, In situ Raman spectroscopy of sulfur speciation in lithium-sulfur batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 3, p. 1709. doi: 10.1021/am5072942
      [59]
      Z.F. Wang, Y.F. Tang, L.Q. Zhang, M. Li, Z.W. Shan, and J.Y. Huang, In situ TEM observations of discharging/charging of solid-state lithium-sulfur batteries at high temperatures, Small, 16(2020), No. 28, art. No. 2001899. doi: 10.1002/smll.202001899
      [60]
      J.Y. Wang, H.J. Tang, H. Wang, R.B. Yu, and D. Wang, Multi-shelled hollow micro-/ nanostructures: Promising platforms for lithium-ion batteries, Mater. Chem. Front., 1(2017), No. 3, p. 414. doi: 10.1039/C6QM00273K
      [61]
      D.Q. Liu, Z. Shadike, R.Q. Lin, et al., Review of recent development of in situ/operando characterization techniques for lithium battery research, Adv. Mater., 31(2019), No. 28, art. No. 1806620. doi: 10.1002/adma.201806620
      [62]
      D.W. Li, Y.K. Wang, B. Lu, and J.Q. Zhang, Real-time measurements of electro-mechanical coupled deformation and mechanical properties of commercial graphite electrodes, Carbon, 169(2020), p. 258. doi: 10.1016/j.carbon.2020.07.072
      [63]
      R.D. Ding, Y.L. Huang, G.X. Li, Q. Liao, T. Wei, Y. Liu, Y.J. Huang, and H. He, Carbon anode materials for rechargeable alkali metal ion batteries and in situ characterization techniques, Front. Chem., 8(2020), art. No. 607504. doi: 10.3389/fchem.2020.607504
      [64]
      S. Schweidler, L.d. Biasi, A. Schiele, P. Hartmann, T. Brezesinski, and J. Janek, Volume changes of graphite anodes revisited: A combined operando X-ray diffraction and in situ pressure analysis study, J. Phys. Chem. C, 122(2018), No. 16, p. 8829. doi: 10.1021/acs.jpcc.8b01873
      [65]
      Y.H. Li, R.T. Zheng, H.X. Yu, et al., Observation of ZrNb14O37 nanowires as a lithium container via in situ and ex situ techniques for high-performance lithium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 25, p. 22429. doi: 10.1021/acsami.9b05841
      [66]
      W.K. Pang, V.K. Peterson, N. Sharma, J.J. Shiu, and S.H. Wu, Lithium migration in Li4Ti5O12 studied using in situ neutron powder diffraction, Chem. Mater., 26(2014), No. 7, p. 2318. doi: 10.1021/cm5002779
      [67]
      K. He, S. Zhang, J. Li, et al., Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy, Nat. Commun., 7(2016), art. No. 11441. doi: 10.1038/ncomms11441
      [68]
      K. He, Y.F. Yuan, W.T. Yao, et al., Atomistic insights of irreversible Li+ intercalation in MnO2 electrode, Angew. Chem. Int. Ed., 61(2022), No. 2, art. No. e202113420.
      [69]
      B. Song, P. Loya, L.L. Shen, et al., Quantitative in situ fracture testing of tin oxide nanowires for lithium ion battery applications, Nano Energy, 53(2018), p. 277. doi: 10.1016/j.nanoen.2018.08.057
      [70]
      K. Kitada, O. Pecher, P.C.M.M. Magusin, M.F. Groh, R.S. Weatherup, and C.P. Grey, Unraveling the reaction mechanisms of SiO anodes for Li-ion batteries by combining in situ 7Li and ex situ 7Li/29Si solid-state NMR spectroscopy, J. Am. Chem. Soc., 141(2019), No. 17, p. 7014. doi: 10.1021/jacs.9b01589
      [71]
      Z.Y. Feng, W.J. Peng, Z.X. Wang, H.J. Guo, X.H. Li, G.C. Yan, and J.X. Wang, Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1549. doi: 10.1007/s12613-021-2335-x
      [72]
      J.L. Zhao, J.Y. Wang, R.Y. Bi, et al., General synthesis of multiple-cores@multiple-shells hollow composites and their application to lithium-ion batteries, Angew. Chem. Int. Ed., 60(2021), No. 49, p. 25719. doi: 10.1002/anie.202110982
      [73]
      D.X. Liu, J.H. Wang, K. Pan, et al., In situ quantification and visualization of lithium transport with neutrons, Angew. Chem., 126(2014), No. 36, p. 9652. doi: 10.1002/ange.201404197
      [74]
      T.Y. Li, X.W. Zhou, Y. Cui, et al., In-situ characterization of dynamic morphological and phase changes of selenium-doped germanium using a single particle cell and synchrotron transmission X-ray microscopy, ChemSusChem, 14(2021), No. 5, p. 1370. doi: 10.1002/cssc.202002776
      [75]
      J.H. Um and S.H. Yu, Unraveling the mechanisms of lithium metal plating/stripping via in situ/operando analytical techniques, Adv. Energy Mater., 11(2021), No. 27, art. No. 2003004. doi: 10.1002/aenm.202003004
      [76]
      Q. Li, T.C. Yi, X.L. Wang, et al., In-situ visualization of lithium plating in all-solid-state lithium-metal battery, Nano Energy, 63(2019), art. No. 103895. doi: 10.1016/j.nanoen.2019.103895
      [77]
      S.H. Yu, X. Huang, J.D. Brock, and H.D. Abruña, Regulating key variables and visualizing lithium dendrite growth: An operando X-ray study, J. Am. Chem. Soc., 141(2019), No. 21, p. 8441. doi: 10.1021/jacs.8b13297
      [78]
      Y.Z. Li, Y.B. Li, A. Pei, et al., Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy, Science, 358(2017), No. 6362, p. 506. doi: 10.1126/science.aam6014
      [79]
      A.B. Gunnarsdóttir, C.V. Amanchukwu, S. Menkin, and C.P. Grey, Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries, J. Am. Chem. Soc., 142(2020), No. 49, p. 20814. doi: 10.1021/jacs.0c10258
      [80]
      X.J. Zeng, D.Q. Liu, S.W. Wang, S. Liu, X.K. Cai, L.H. Zhang, R. Zhao, B.H. Li, and F.Y. Kang, In situ observation of interface evolution on a graphite anode by scanning electrochemical microscopy, ACS Appl. Mater. Interfaces, 12(2020), No. 33, p. 37047. doi: 10.1021/acsami.0c07250
      [81]
      L.Y. Wang, L.F. Wang, R. Wang, R. Xu, C. Zhan, W. Yang, and G.C. Liu, Solid electrolyte-electrode interface based on buffer therapy in solid-state lithium batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1584. doi: 10.1007/s12613-021-2278-2
      [82]
      T.C. Liu, L.P. Lin, X.X. Bi, et al., In situ quantification of interphasial chemistry in Li-ion battery, Nat. Nanotechnol., 14(2019), No. 1, p. 50. doi: 10.1038/s41565-018-0284-y
      [83]
      C. Hou, J.H. Han, P. Liu, et al., Operando observations of SEI film evolution by mass-sensitive scanning transmission electron microscopy, Adv. Energy Mater., 9(2019), No. 45, art. No. 1902675. doi: 10.1002/aenm.201902675
      [84]
      Y.X. Song, Y. Shi, J. Wan, B. Liu, L.J. Wan, and R. Wen, Dynamic visualization of cathode/electrolyte evolution in quasi-solid-state lithium batteries, Adv. Energy Mater., 10(2020), No. 25, art. No. 2000465. doi: 10.1002/aenm.202000465
      [85]
      D.C. Chen, M.A. Mahmoud, J.H. Wang, et al., Operando investigation into dynamic evolution of cathode–electrolyte interfaces in a Li-ion battery, Nano Lett., 19(2019), No. 3, p. 2037. doi: 10.1021/acs.nanolett.9b00179
      [86]
      L.M. Suo, Z. Fang, Y.S. Hu, and L.Q. Chen, FT-Raman spectroscopy study of solvent-in-salt electrolytes, Chin. Phys. B, 25(2016), No. 1, art. No. 016101. doi: 10.1088/1674-1056/25/1/016101
      [87]
      C.Y. Li, Y. Yu, C. Wang, et al., Surface changes of LiNixMnyCo1–xyO2 in Li-ion batteries using in situ surface-enhanced Raman spectroscopy, J. Phys. Chem. C, 124(2020), No. 7, p. 4024. doi: 10.1021/acs.jpcc.9b11677
      [88]
      Y.R. Zhang, Y. Katayama, R. Tatara, et al., Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy, Energy Environ. Sci., 13(2020), No. 1, p. 183. doi: 10.1039/C9EE02543J
      [89]
      F. Wohde, R. Bhandary, J.M. Moldrickx, J. Sundermeyer, M. Schönhoff, and B. Roling, Li+ ion transport in ionic liquid-based electrolytes and the influence of sulfonate-based zwitterion additives, Solid State Ion., 284(2016), p. 37. doi: 10.1016/j.ssi.2015.11.017
      [90]
      J.D. Forster, S.J. Harris, and J.J. Urban, Mapping Li+ concentration and transport via in situ confocal Raman microscopy, J. Phys. Chem. Lett., 5(2014), No. 11, p. 2007. doi: 10.1021/jz500608e
      [91]
      C.J. Jafta, X.G. Sun, G.M. Veith, et al., Probing microstructure and electrolyte concentration dependent cell chemistry via operando small angle neutron scattering, Energy Environ. Sci., 12(2019), No. 6, p. 1866. doi: 10.1039/C8EE02703J
      [92]
      C.S. Jiang, Y. Yin, H. Guthrey, K. Park, S.H. Lee, and M.M. Al-Jassim, Local electrical degradations of solid-state electrolyte by nm-scale operando imaging of ionic and electronic transports, J. Power Sources, 481(2021), art. No. 229138. doi: 10.1016/j.jpowsour.2020.229138
      [93]
      H.J. Liang, B.H. Hou, W.H. Li, et al., Staging Na/K-ion de-/ intercalation of graphite retrieved from spent Li-ion batteries: In operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries, Energy Environ. Sci., 12(2019), No. 12, p. 3575. doi: 10.1039/C9EE02759A
      [94]
      A. Schiele, T. Hatsukade, B.B. Berkes, P. Hartmann, T. Brezesinski, and J. Janek, High-throughput in situ pressure analysis of lithium-ion batteries, Anal. Chem., 89(2017), No. 15, p. 8122. doi: 10.1021/acs.analchem.7b01760
      [95]
      B. Michalak, B.B. Berkes, H. Sommer, T. Bergfeldt, T. Brezesinski, and J. Janek, Gas evolution in LiNi0.5Mn1.5O4/graphite cells studied in operando by a combination of differential electrochemical mass spectrometry, neutron imaging, and pressure measurements, Anal. Chem., 88(2016), No. 5, p. 2877. doi: 10.1021/acs.analchem.5b04696
      [96]
      B. Gerelt-Od, J. Kim, E. Shin, et al., In situ Raman investigation of resting thermal effects on gas emission in charged commercial 18650 lithium ion batteries, J. Ind. Eng. Chem., 96(2021), p. 339. doi: 10.1016/j.jiec.2021.01.039
      [97]
      X. Teng, C. Zhan, Y. Bai, et al., In situ analysis of gas generation in lithium-ion batteries with different carbonate-based electrolytes, ACS Appl. Mater. Interfaces, 7(2015), No. 41, p. 22751. doi: 10.1021/acsami.5b08399
      [98]
      J. Vetter, M. Holzapfel, A. Wuersig, W. Scheifele, J. Ufheil, and P. Novák, In situ study on CO2 evolution at lithium-ion battery cathodes, J. Power Sources, 159(2006), No. 1, p. 277. doi: 10.1016/j.jpowsour.2006.04.087
      [99]
      Z.Q. Zeng, X.W. Liu, X.Y. Jiang, et al., Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte, InfoMat, 2(2020), No. 5, p. 984. doi: 10.1002/inf2.12089
      [100]
      Z.Y. Yu, Y. Shao, L.P. Ma, et al., Revealing the sulfur redox paths in a Li–S battery by an in situ hyphenated technique of electrochemistry and mass spectrometry, Adv. Mater., 34(2022), No. 7, art. No. 2106618. doi: 10.1002/adma.202106618

    Catalog


    • /

      返回文章
      返回