留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(7)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  449
  • HTML全文浏览量:  135
  • PDF下载量:  35
  • 被引次数: 0
Jinxiao Yang, Xudong Wang, Yiren Cai, and Xiuyu Yang, Corrosion resistance and electrical conductivity of V/Ce conversion coating on magnesium alloy AZ31B, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 653-659. https://doi.org/10.1007/s12613-022-2463-y
Cite this article as:
Jinxiao Yang, Xudong Wang, Yiren Cai, and Xiuyu Yang, Corrosion resistance and electrical conductivity of V/Ce conversion coating on magnesium alloy AZ31B, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 653-659. https://doi.org/10.1007/s12613-022-2463-y
引用本文 PDF XML SpringerLink
研究论文

AZ31B镁合金表面V/Ce转化膜层的耐蚀和导电性能的研究

  • 通讯作者:

    王旭东    E-mail: xdwang@ustb.edu.cn

文章亮点

  • (1) 制备出了满足耐蚀性和导电性的V/Ce膜层
  • (2) 研究了V/Ce膜层的形成机理。
  • (3) 提出膜层成分对导电性的影响,并分析了导电机制
  • 以偏钒酸钠和硝酸铈为主盐,在AZ31B镁合金表面制备了V/Ce转化膜层。利用SEM、激光扫描共聚焦显微镜、XPS等技术对制备的膜层进行微观形貌观察与成分分析,进而探讨了成膜机理。结果表明:化学转化膜表面有着均匀网状微裂纹,并且在其上分布有球状颗粒。膜层物质主要由V、Ce和Mg的氧化物以及CeVO4组成。采用极化曲线和电化学交流阻抗谱(EIS)评估了基体和转化膜层的耐蚀性。与AZ31B镁合金相比,转化膜层的自腐蚀电位提高了200 mV,腐蚀电流密度降低了两个数量级。EIS测试表明经过化学转化后,镁合金的阻抗值由裸体的2.2 × 102 Ω·cm2增加到1.6 × 103 Ω·cm2。此外,通过电导率仪和莫特肖特基(MS)曲线研究了涂层的导电性,结果表明膜层导电率为9.657 MS/m,具有N型半导体特性。其导电性和膜层成分的半导体特性有很大关系。
  • Research Article

    Corrosion resistance and electrical conductivity of V/Ce conversion coating on magnesium alloy AZ31B

    + Author Affiliations
    • A V/Ce conversion coating was deposited in the surface of AZ31B magnesium alloy in a solution containing vanadate and cerium nitrate. The coating composition and morphology were examined. The conversion coating appears to consist of a thin and cracked coating with a scattering of spherical particles. The corrosion behavior of the substrate and conversion coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Compared with AZ31B magnesium alloy, the corrosion current density of the conversion coating is decreased by two orders of magnitude. The total impedance of the V/Ce conversion coating rise to 1.6 × 103 Ω·cm2 in contrast with 2.2 × 102 Ω·cm2 of the bare AZ31B. In addition, the electrical conductivity of the coating was assessed by conductivity meter and Mott-Schottky measurement. The results reveal a high dependence of the conductivity of the coating on the semiconductor properties of the phase compositions.
    • loading
    • [1]
      T.C. Xu, Y. Yang, X.D. Peng, J.F. Song, and F.S. Pan, Overview of advancement and development trend on magnesium alloy, J. Magnes. Alloys, 7(2019), No. 3, p. 536. doi: 10.1016/j.jma.2019.08.001
      [2]
      V. Badisha, S. Shaik, R. Dumpala, and B.R. Sunil, Developing Mg–Zn surface alloy by friction surface allosying: in vitro degradation studies in simulated body fluids, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 962. doi: 10.1007/s12613-020-2053-9
      [3]
      J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724. doi: 10.1007/s12613-020-1987-2
      [4]
      G.Z. Zhang, S.Y. Qin, L.G. Yan, and X.F. Zhang, Simultaneous improvement of electromagnetic shielding effectiveness and corrosion resistance in magnesium alloys by electropulsing, Mater. Charact., 174(2021), art. No. 111042. doi: 10.1016/j.matchar.2021.111042
      [5]
      Y.J. Tarzanagh, D. Seifzadeh, and R. Samadianfard, Combining the 8-hydroxyquinoline intercalated layered double hydroxide film and sol–gel coating for active corrosion protection of the magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 536. doi: 10.1007/s12613-021-2251-0
      [6]
      M. Razzaghi, M. Kasiri-Asgarani, H.R. Bakhsheshi-Rad, and H. Ghayour, In vitro bioactivity and corrosion of PLGA/hardystonite composite-coated magnesium-based nanocomposite for implant applications, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 168. doi: 10.1007/s12613-020-2072-6
      [7]
      M.S. Prasad, M. Ashfaq, N.K. Babu, A. Sreekanth, K. Sivaprasad, and V. Muthupandi, Improving the corrosion properties of magnesium AZ31 alloy GTA weld metal using microarc oxidation process, Int. J. Miner. Metall. Mater., 24(2017), No. 5, p. 566. doi: 10.1007/s12613-017-1438-x
      [8]
      M. Ahangari, M.H. Johar, and M. Saremi, Hydroxyapatite-carboxymethyl cellulose-graphene composite coating development on AZ31 magnesium alloy: Corrosion behavior and mechanical properties, Ceram. Int., 47(2021), No. 3, p. 3529. doi: 10.1016/j.ceramint.2020.09.197
      [9]
      Y.L. Wang, Y.H. Zhu, C. Li, et al., Smart epoxy coating containing Ce-MCM-22 zeolites for corrosion protection of Mg–Li alloy, Appl. Surf. Sci., 369(2016), p. 384. doi: 10.1016/j.apsusc.2016.02.102
      [10]
      M. Tencer, Electrical conductivity of chromate conversion coating on electrodeposited zinc, Appl. Surf. Sci., 252(2006), No. 23, p. 8229. doi: 10.1016/j.apsusc.2005.10.039
      [11]
      M. Glor, Electrostatic ignition hazards in the process industry, J. Electrost., 63(2005), No. 6-10, p. 447. doi: 10.1016/j.elstat.2005.03.001
      [12]
      W.J. Cheong, B.L. Luan, and D.W. Shoesmith, Protective coating on Mg AZ91D alloy – The effect of electroless nickel (EN) bath stabilizers on corrosion behaviour of Ni–P deposit, Corros. Sci., 49(2007), No. 4, p. 1777. doi: 10.1016/j.corsci.2006.08.025
      [13]
      Z.M. Liu and W. Gao, Electroless nickel plating on AZ91 Mg alloy substrate, Surf. Coat. Technol., 200(2006), No. 16-17, p. 5087. doi: 10.1016/j.surfcoat.2005.05.023
      [14]
      G.S. Wu, X.Q. Zeng, and G.Y. Yuan, Growth and corrosion of aluminum PVD-coating on AZ31 magnesium alloy, Mater. Lett., 62(2008), No. 28, p. 4325. doi: 10.1016/j.matlet.2008.07.014
      [15]
      X.H. Guo, K.Q. Du, Q.Z. Guo, Y. Wang, and F.H. Wang, Experimental study of corrosion protection of a three-layer film on AZ31B Mg alloy, Corros. Sci., 65(2012), p. 367. doi: 10.1016/j.corsci.2012.08.055
      [16]
      S.Y. Jian, Y.R. Chu, and C.S. Lin, Permanganate conversion coating on AZ31 magnesium alloys with enhanced corrosion resistance, Corros. Sci., 93(2015), p. 301. doi: 10.1016/j.corsci.2015.01.040
      [17]
      G.Q. Duan, L.X. Yang, S.J. Liao, et al., Designing for the chemical conversion coating with high corrosion resistance and low electrical contact resistance on AZ91D magnesium alloy, Corros. Sci., 135(2018), p. 197. doi: 10.1016/j.corsci.2018.02.051
      [18]
      W. Zhu, W.F. Li, S.L. Mu, N.Q. Fu, and Z.M. Liao, Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties, Appl. Surf. Sci., 405(2017), p. 157. doi: 10.1016/j.apsusc.2017.02.046
      [19]
      W. Zai, Y.C. Su, H.C. Man, J.S. Lian, and G.Y. Li, Effect of pH value and preparation temperature on the formation of magnesium phosphate conversion coatings on AZ31 magnesium alloy, Appl. Surf. Sci., 492(2019), p. 314. doi: 10.1016/j.apsusc.2019.05.309
      [20]
      S.M. Hung, H. Lin, H.W. Chen, S.Y. Chen, and C.S. Lin, Corrosion resistance and electrical contact resistance of a thin permanganate conversion coating on dual-phase LZ91 Mg–Li alloy, J. Mater. Res. Technol., 11(2021), p. 1953. doi: 10.1016/j.jmrt.2021.02.050
      [21]
      A. Fattah-alhosseini and M.S. Joni, Investigation of the passive behaviour of AZ31B alloy in alkaline solutions, J. Magnes. Alloys, 2(2014), No. 2, p. 175. doi: 10.1016/j.jma.2014.05.007
      [22]
      D.F. Zhang, Z.B. Qi, B.B. Wei, Z.T. Wu, and Z.C. Wang, Anticorrosive yet conductive Hf/Si3N4 multilayer coatings on AZ91D magnesium alloy by magnetron sputtering, Surf. Coat. Technol., 309(2017), p. 12. doi: 10.1016/j.surfcoat.2016.11.042
      [23]
      C.Y. Li, X.L. Fan, L.Y. Cui, and R.C. Zeng, Corrosion resistance and electrical conductivity of a nano ATO-doped MAO/methyltrimethoxysilane composite coating on magnesium alloy AZ31, Corros. Sci., 168(2020), art. No. 108570. doi: 10.1016/j.corsci.2020.108570
      [24]
      S.L. Mu, J. Du, H. Jiang, and W.F. Li, Composition analysis and corrosion performance of a Mo–Ce conversion coating on AZ91 magnesium alloy, Surf. Coat. Technol., 254(2014), p. 364. doi: 10.1016/j.surfcoat.2014.06.044
      [25]
      S.Y. Jian, Y.C. Tzeng, M.D. Ger, et al., The study of corrosion behavior of manganese-based conversion coating on LZ91 magnesium alloy: Effect of addition of pyrophosphate and cerium, Mater. Des., 192(2020), art. No. 108707. doi: 10.1016/j.matdes.2020.108707
      [26]
      L. Kogut and K. Komvopoulos, Electrical contact resistance theory for conductive rough surfaces separated by a thin insulating film, J. Appl. Phys., 95(2004), No. 2, p. 576. doi: 10.1063/1.1629392
      [27]
      F. Ureña-Begara, A. Crunteanu, and J.P. Raskin, Raman and XPS characterization of vanadium oxide thin films with temperature, Appl. Surf. Sci., 403(2017), p. 717. doi: 10.1016/j.apsusc.2017.01.160
      [28]
      G. Silversmit, D. Depla, H. Poelman, G.B. Marin, and R. de Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+), J. Electron Spectrosc. Relat. Phenom., 135(2004), No. 2-3, p. 167. doi: 10.1016/j.elspec.2004.03.004
      [29]
      Y.H. Zhou and J. Zhou, Ti/CeOx(111) interfaces studied by XPS and STM, Surf. Sci., 606(2012), No. 7-8, p. 749. doi: 10.1016/j.susc.2012.01.003
      [30]
      J.J. Guo, X.F. Liu, K.Q. Du, et al., An anti-stripping and self-healing micro-arc oxidation/acrylamide gel composite coating on magnesium alloy AZ31, Mater. Lett., 260(2020), art. No. 126912. doi: 10.1016/j.matlet.2019.126912
      [31]
      H. Ardelean, I. Frateur, and P. Marcus, Corrosion protection of magnesium alloys by cerium, zirconium and niobium-based conversion coatings, Corros. Sci., 50(2008), No. 7, p. 1907. doi: 10.1016/j.corsci.2008.03.015
      [32]
      F.Y. Gao, X.L. Tang, H.H. Yi, et al., Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx–CeO2 catalysts for SCR of NOx with NH3 at low temperature, Chem. Eng. J., 317(2017), p. 20. doi: 10.1016/j.cej.2017.02.042
      [33]
      C. Ubeda, G. Garces, P. Adeva, I. Llorente, G.S. Frankel, and S. Fajardo, The role of the beta-Mg17Al12 phase on the anomalous hydrogen evolution and anodic dissolution of AZ magnesium alloys, Corros. Sci., 165(2020), art. No. 108384. doi: 10.1016/j.corsci.2019.108384
      [34]
      P.S. Correa, C.F. Malfatti, and D.S. Azambuja, Corrosion behavior study of AZ91 magnesium alloy coated with methyltriethoxysilane doped with cerium ions, Prog. Org. Coat., 72(2011), No. 4, p. 739. doi: 10.1016/j.porgcoat.2011.08.005
      [35]
      Y.X. Liu, Z. Liu, A.Y. Xu, and X.T. Liu, Understanding pitting corrosion behavior of AZ91 alloy and its MAO coating in 3.5% NaCl solution by cyclic potentiodynamic polarization, J. Magnes. Alloys, 10(2022), No. 5, p. 1368. doi: 10.1016/j.jma.2020.12.005
      [36]
      A. Fattah-alhosseini, F. Soltani, F. Shirsalimi, B. Ezadi, and N. Attarzadeh, The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM), Corros. Sci., 53(2011), No. 10, p. 3186. doi: 10.1016/j.corsci.2011.05.063
      [37]
      M.C.L. de Oliveira, V.S.M. Pereira, O.V. Correa, N.B. de Lima, and R.A. Antunes, Correlation between the corrosion resistance and the semiconducting properties of the oxide film formed on AZ91D alloy after solution treatment, Corros. Sci., 69(2013), p. 311. doi: 10.1016/j.corsci.2012.12.015
      [38]
      V. Ezhilselvi, J. Nithin, J.N. Balaraju, and S. Subramanian, The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy, Surf. Coat. Technol., 288(2016), p. 221. doi: 10.1016/j.surfcoat.2016.01.040
      [39]
      S. Roshan and A.A. Sarabi, Improved performance of Ti-based conversion coating in the presence of Ce/Co ions: Surface characterization, electrochemical and adhesion study, Surf. Coat. Technol., 410(2021), art. No. 126931. doi: 10.1016/j.surfcoat.2021.126931
      [40]
      J.M. Sánchez-Amaya, G. Blanco, F.J. Garcia-Garcia, M. Bethencourt, and F.J. Botana, XPS and AES analyses of cerium conversion coatings generated on AA5083 by thermal activation, Surf. Coat. Technol., 213(2012), p. 105. doi: 10.1016/j.surfcoat.2012.10.027
      [41]
      X.W. Yu, C.N. Cao, Z.M. Yao, D.R. Zhou, and Z.D. Yin, Study of double layer rare earth metal conversion coating on aluminum alloy LY12, Corros. Sci., 43(2001), No. 7, p. 1283. doi: 10.1016/S0010-938X(00)00141-4
      [42]
      T. Fiedler, N. White, M. Dahari, and K. Hooman, On the electrical and thermal contact resistance of metal foam, Int. J. Heat Mass Transfer, 72(2014), p. 565.
      [43]
      W.E. Wilson, S.V. Angadi, and R.L. Jackson, Surface separation and contact resistance considering sinusoidal elastic-plastic multi-scale rough surface contact, Wear, 268(2010), No. 1-2, p. 190. doi: 10.1016/j.wear.2009.07.012
      [44]
      D.K. Qiu, L.F. Peng, P.Y. Yi, and X.M. Lai, A micro contact model for electrical contact resistance prediction between roughness surface and carbon fiber paper, Int. J. Mech. Sci., 124-125(2017), p. 37. doi: 10.1016/j.ijmecsci.2017.02.026
      [45]
      S. Shenogin, L. Ferguson, and A.K. Roy, The effect of contact resistance on electrical conductivity in filled elastomer materials, Polymer, 198(2020), art. No. 122502. doi: 10.1016/j.polymer.2020.122502
      [46]
      R.J. Barczynski and L. Murawski, Mixed electronic-ionic conductivity in transition metal oxide glasses containing alkaline ions, J. Non Cryst. Solids, 307-310(2002), p. 1055. doi: 10.1016/S0022-3093(02)01572-7
      [47]
      S. Dahiya, R. Punia, A. Singh, A.S. Maan, and S. Murugavel, DC conduction and electric modulus formulation of lithium-doped bismuth zinc vanadate semiconducting glassy system, J. Am. Ceram. Soc., 98(2015), No. 9, p. 2776. doi: 10.1111/jace.13661
      [48]
      I.C. Vinke, J. Diepgrond, B.A. Boukamp, K.J. de Vries, and A.J. Burggraaf, Bulk and electrochemical properties of BiVO4, Solid State Ionics, 57(1992), No. 1-2, p. 83. doi: 10.1016/0167-2738(92)90067-Y
      [49]
      L. Adijanto, V.B. Padmanabhan, R. Küngas, R.J. Gorte, and J.M. Vohs, Transition metal-doped rare earth vanadates: A regenerable catalytic material for SOFC anodes, J. Mater. Chem., 22(2012), No. 22, art. No. 11396. doi: 10.1039/c2jm31774e
      [50]
      M. Liu, Z.L. Lv, Y. Cheng, G.F. Ji, and M. Gong, Structural, elastic and electronic properties of CeVO4 via first-principles calculations, Comput. Mater. Sci., 79(2013), p. 811. doi: 10.1016/j.commatsci.2013.07.024
      [51]
      E. Mansour, K. El-Egili, and G. El-Damrawi, Mechanism of hopping conduction in new CeO2–B2O3 semiconducting glasses, Physica B, 389(2007), No. 2, p. 355. doi: 10.1016/j.physb.2006.07.017
      [52]
      R. El-Mallawany, A.H. El-Sayed, and M.M.H.A. El-Gawad, ESR and electrical conductivity studies of (TeO2)0.95(CeO2)0.05 semiconducting glasses, Mater. Chem. Phys., 41(1995), No. 2, p. 87. doi: 10.1016/0254-0584(95)01517-5

    Catalog


    • /

      返回文章
      返回