留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(11)

数据统计

分享

计量
  • 文章访问数:  1180
  • HTML全文浏览量:  224
  • PDF下载量:  33
  • 被引次数: 0
Hongmei Xie, Jiahong Dai, and Dan Zhou, Tribological behaviors of graphene oxide partly substituted with nano-SiO2 as lubricant additives in water for magnesium alloy/steel interfaces, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1425-1434. https://doi.org/10.1007/s12613-022-2465-9
Cite this article as:
Hongmei Xie, Jiahong Dai, and Dan Zhou, Tribological behaviors of graphene oxide partly substituted with nano-SiO2 as lubricant additives in water for magnesium alloy/steel interfaces, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1425-1434. https://doi.org/10.1007/s12613-022-2465-9
引用本文 PDF XML SpringerLink
研究论文

纳米SiO2部分取代氧化石墨烯作为水基润滑添加剂在镁合金/钢界面的摩擦学性能研究

  • 通讯作者:

    谢红梅    E-mail: xiehongmei@yznu.cn

文章亮点

  • (1) 探讨了成本低廉、润滑性能优异的纳米SiO2部分取代氧化石墨烯复合作为水基润滑添加剂在镁合金/钢体系的摩擦学性能。
  • (2) 建立了纳米材料特性、纳米材料与镁合金表面之间特定的微观相互作用与宏观摩擦学性能的相关性。
  • (3) 总结了氧化石墨烯/SiO2复合水基润滑液在镁合金/钢摩擦体系中的减摩抗磨机理。
  • 氧化石墨烯是一种摩擦学性能优异的水基润滑添加剂,近年来受到国内外学者的广泛关注。然而,高的生产成本限制了氧化石墨烯的广泛应用。因此,本文拟采用成本低廉,润滑性能优异的纳米SiO2部分取代氧化石墨烯制备氧化石墨烯/SiO2复合水基润滑液,采用摩擦磨损试验机研究两种纳米材料在去离子水中的比例对镁合金/钢体系中摩擦系数和磨损体积的影响。结果表明,在本文测试条件下氧化石墨烯/SiO2复合水基润滑液相对于纯氧化石墨烯水基润滑液和SiO2水基润滑液具有低的摩擦系数。针对承载能力测试,所有的润滑液在载荷1 N和3 N的测试条件下具有低的磨损体积。随着载荷的增加,不同润滑液的抗磨损性能具有较大的差别。在载荷5 N和8 N的测试条件下,氧化石墨烯/SiO2复合水基润滑液的磨损体积相对于纯氧化石墨烯水基润滑液分别下降了50.5%和49.2%。氧化石墨烯/SiO2复合水基润滑液在严苛的摩擦实验测试条件下相对于纯氧化石墨烯水基润滑液磨损体积下降了46.3%。实验结果为镁合金碳基复合水基成形润滑液的设计和制备提供了新的思路。
  • Research Article

    Tribological behaviors of graphene oxide partly substituted with nano-SiO2 as lubricant additives in water for magnesium alloy/steel interfaces

    + Author Affiliations
    • Although graphene oxide (GO) has emerged as an excellent lubricant additive in water, there remain great challenges in their practical application due to high production costs. By taking into account the low cost and also its excellent tribological properties, it is likely that nano-SiO2 can be used as a lubricant additive to partially replace GO. Hence, this paper aims to explore the tribological properties of nano-SiO2 incorporated in GO nanofluids for partial GO replacement by investigating the friction coefficient and wear volume of the prepared SiO2/GO hybrid nanofluids for magnesium alloy/steel sliding pairs. The experiments reveal that the SiO2/GO hybrids retain low friction coefficients as compared to individual GO or SiO2 at all test conditions in this study. However, as for the bearing capacity test, all samples can provide a low wear volume under the loads of 1 and 3 N. With the increase of the normal load, there is considerable differences in the anti-wear behavior. Compared with that of individual GO nanofluids, the wear volume of the GO/SiO2 (mass ratio of 0.3:0.2) hybrid nanofluids was reduced by 50.5% at 5 N and by 49.2% at 8 N. Furthermore, the wear volume of the GO/SiO2 (mass ratio of 0.3:0.2) hybrid nanofluids was reduced by 46.3% under the rigorous conditions, as compared to individual GO nanofluids. The findings provide new insights into developing carbon nanomaterial-based hybrid nanofluids for magnesium alloy formation.
    • loading
    • [1]
      S. Nandy, S.P. Tsai, L. Stephenson, D. Raabe, and S. Zaefferer, The role of Ca, Al and Zn on room temperature ductility and grain boundary cohesion of magnesium, J. Magnes. Alloys, 9(2021), No. 5, p. 1521. doi: 10.1016/j.jma.2021.03.005
      [2]
      H.F. Zhang, L. Zhou, W.L. Li, G.H. Li, Y.T. Tang, N. Guo, and J.C. Feng, Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 699. doi: 10.1007/s12613-020-2044-x
      [3]
      J. Wang, T. Li, H.X. Li, Y.Z. Ma, K.N. Zhao, C.L. Yang, and J.S. Zhang, Effect of trace Ni addition on microstructure, mechanical and corrosion properties of the extruded Mg–Gd–Y–Zr–Ni alloys for dissoluble fracturing tools, J. Magnes. Alloys, 9(2021), No. 5, p. 1632. doi: 10.1016/j.jma.2020.08.019
      [4]
      B. Ravaji and S.P. Joshi, A crystal plasticity investigation of grain size–texture interaction in magnesium alloys, Acta Mater., 208(2021), art. No. 116743. doi: 10.1016/j.actamat.2021.116743
      [5]
      F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 669. doi: 10.1007/s12613-019-1921-7
      [6]
      V.S. Yadav, M.R. Sankar, and L.M. Pandey, Coating of bioactive glass on magnesium alloys to improve its degradation behavior: Interfacial aspects, J. Magnes. Alloys, 8(2020), No. 4, p. 999. doi: 10.1016/j.jma.2020.05.005
      [7]
      Z. Cheng, S.Z. Wang, G.L. Wu, J.H. Gao, X.S. Yang, and H.H. Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 389. doi: 10.1007/s12613-021-2373-4
      [8]
      H. Movahedi, S. Jamshidi, and M. Hajipour, New insight into the filtration control of drilling fluids using a graphene-based nanocomposite under static and dynamic conditions, ACS Sustainable Chem. Eng., 9(2021), No. 38, p. 12844. doi: 10.1021/acssuschemeng.1c03563
      [9]
      R.B. Qiang, L.F. Hu, K.M. Hou, J.Q. Wang, and S.R. Yang, Water-soluble graphene quantum dots as high-performance water-based lubricant additive for steel/steel contact, Tribol. Lett., 67(2019), No. 2, art. No. 64. doi: 10.1007/s11249-019-1177-4
      [10]
      J.Z. Tang, S.Q. Chen, Y.L. Jia, Y. Ma, H.M. Xie, X. Quan, and Q. Ding, Carbon dots as an additive for improving performance in water-based lubricants for amorphous carbon (a-C) coatings, Carbon, 156(2020), p. 272. doi: 10.1016/j.carbon.2019.09.055
      [11]
      M.C. Li, Q.L. Wu, K.L. Song, Y. Qing, and Y.Q. Wu, Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids, ACS. Appl. Mater. Interfaces, 7(2015), No. 8, p. 5006. doi: 10.1021/acsami.5b00498
      [12]
      A.A. Alazemi, A.D. Dysart, X.L. Phuah, V.G. Pol, and F. Sadeghi, MoS2 nanolayer coated carbon spheres as an oil additive for enhanced tribological performance, Carbon, 110(2016), p. 367. doi: 10.1016/j.carbon.2016.09.047
      [13]
      Y.X. Wang, Y.Y. Du, J.A. Deng, and Z.P. Wang, Friction reduction of water based lubricant with highly dispersed functional MoS2 nanosheets, Colloids Surf. A, 562(2019), p. 321. doi: 10.1016/j.colsurfa.2018.11.047
      [14]
      S. Shahnazar, S. Bagheri, and S.B.A. Hamid, Enhancing lubricant properties by nanoparticle additives, Int. J. Hydrogen Energy, 41(2016), No. 4, p. 3153. doi: 10.1016/j.ijhydene.2015.12.040
      [15]
      W.L. Guo, J. Yin, H. Qiu, Y.F. Guo, H.R. Wu, and M.M. Xue, Friction of low-dimensional nanomaterial systems, Friction, 2(2014), No. 3, p. 209. doi: 10.1007/s40544-014-0064-0
      [16]
      H.J. Song and N. Li, Frictional behavior of oxide graphene nanosheets as water-base lubricant additive, Appl. Phys. A, 105(2011), No. 4, p. 827. doi: 10.1007/s00339-011-6636-1
      [17]
      H. Kinoshita, Y. Nishina, A.A. Alias, and M. Fujii, Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives, Carbon, 66(2014), p. 720. doi: 10.1016/j.carbon.2013.08.045
      [18]
      H.M. Xie, B. Jiang, J.H. Dai, C. Peng, C.X. Li, Q. Li, and F.S. Pan, Tribological behaviors of graphene and graphene oxide as water-based lubricant additives for magnesium alloy/steel contacts, Materials, 11(2018), No. 2, art. No. 206. doi: 10.3390/ma11020206
      [19]
      T. Lv, X.F. Xu, A.B. Yu, and X.D. Hu, Oil mist concentration and machining characteristics of SiO2 water-based nano-lubricants in electrostatic minimum quantity lubrication-EMQL milling, J. Mater. Process. Technol., 290(2021), art. No. 116964. doi: 10.1016/j.jmatprotec.2020.116964
      [20]
      S.Y. Sia, E.Z. Bassyony, and A.A.D. Sarhan, Development of SiO2 nanolubrication system to be used in sliding bearings, Int. J. Adv. Manuf. Technol., 71(2014), No. 5-8, p. 1277. doi: 10.1007/s00170-013-5566-9
      [21]
      M. Sayuti, A.A.D. Sarhan, and F. Salem, Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption, J. Cleaner Prod., 67(2014), p. 265. doi: 10.1016/j.jclepro.2013.12.052
      [22]
      H.M. Xie, B. Jiang, Q.H. Wang, X.S. Xia, and F.S. Pan, Effects of combined additions of SiO2 and MoS2 nanoparticles as lubricant additive on the tribological properties of AZ31 magnesium alloy, Sci. China Technol. Sci., 59(2016), No. 5, p. 689. doi: 10.1007/s11431-015-5990-1
      [23]
      M. Sayuti, A.A.D. Sarhan, and M. Hamdi, An investigation of optimum SiO2 nanolubrication parameters in end milling of aerospace Al6061-T6 alloy, Int. J. Adv. Manuf. Technol., 67(2013), No. 1-4, p. 833. doi: 10.1007/s00170-012-4527-z
      [24]
      X.H. Jia, J. Huang, Y. Li, J. Yang, and H.J. Song, Monodisperse Cu nanoparticles @ MoS2 nanosheets as a lubricant additive for improved tribological properties, Appl. Surf. Sci., 494(2019), p. 430. doi: 10.1016/j.apsusc.2019.07.194
      [25]
      P. Wu, X.C. Chen, C.H. Zhang, and J.B. Luo, Synergistic tribological behaviors of graphene oxide and nanodiamond as lubricating additives in water, Tribol. Int., 132(2019), p. 177. doi: 10.1016/j.triboint.2018.12.021
      [26]
      X. Li, Y. Chen, S.P. Mo, L.S. Jia, and X.F. Shao, Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid, Thermochim. Acta, 595(2014), p. 6. doi: 10.1016/j.tca.2014.09.006
      [27]
      D. Berman, A. Erdemir, A.V. Zinovev, and A.V. Sumant, Nanoscale friction properties of graphene and graphene oxide, Diamond Relat. Mater., 54(2015), p. 91. doi: 10.1016/j.diamond.2014.10.012
      [28]
      S. Bhowmick, A. Banerji, and A.T. Alpas, Role of humidity in reducing sliding friction of multilayered graphene, Carbon, 87(2015), p. 374. doi: 10.1016/j.carbon.2015.01.053
      [29]
      X.H. Li, Z. Cao, Z.J. Zhang, and H.X. Dang, Surface-modification in situ of nano-SiO2 and its structure and tribological properties, Appl. Surf. Sci., 252(2006), No. 22, p. 7856. doi: 10.1016/j.apsusc.2005.09.068
      [30]
      S. Samanta and R.R. Sahoo, Covalently linked hexagonal boron nitride–graphene oxide nanocomposites as high-performance oil-dispersible lubricant additives, ACS Appl. Nano Mater., 3(2020), No. 11, p. 10941. doi: 10.1021/acsanm.0c02193
      [31]
      X.Y. Ge, J.J. Li, R. Luo, C.H. Zhang, and J.B. Luo, Macroscale superlubricity enabled by the synergy effect of graphene-oxide nanoflakes and ethanediol, ACS Appl. Mater. Interfaces, 10(2018), No. 47, p. 40863. doi: 10.1021/acsami.8b14791
      [32]
      M. Mosleh, N.D. Atnafu, J.H. Belk, and O.M. Nobles, Modification of sheet metal forming fluids with dispersed nanoparticles for improved lubrication, Wear, 267(2009), No. 5-8, p. 1220. doi: 10.1016/j.wear.2008.12.074
      [33]
      X. Han, S.J. Thrush, Z.P. Zhang, G.C. Barber, and H.W. Qu, Tribological characterization of ZnO nanofluids as fastener lubricants, Wear, 468-469(2021), art. No. 203592. doi: 10.1016/j.wear.2020.203592

    Catalog


    • /

      返回文章
      返回