留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 1
Jan.  2023

图(8)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  855
  • HTML全文浏览量:  245
  • PDF下载量:  62
  • 被引次数: 0
Xueqin Liu, Xuejian Wang, Enyu Guo, Zongning Chen, Huijun Kang,  and Tongmin Wang, Influence of deformation on the corrosion behavior of LZ91 Mg–Li alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 72-81. https://doi.org/10.1007/s12613-022-2466-8
Cite this article as:
Xueqin Liu, Xuejian Wang, Enyu Guo, Zongning Chen, Huijun Kang,  and Tongmin Wang, Influence of deformation on the corrosion behavior of LZ91 Mg–Li alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 72-81. https://doi.org/10.1007/s12613-022-2466-8
引用本文 PDF XML SpringerLink
研究论文

变形对LZ91镁锂合金腐蚀行为的影响

  • 通讯作者:

    郭恩宇    E-mail: eyguo@dlut.edu.cn

    王同敏    E-mail: tmwang@dlut.edu.cn

文章亮点

  • (1) 系统地研究了锻造和轧制对LZ91镁锂合金微观组织的影响规律
  • (2) 阐明了变形后的微观组织对LZ91镁锂合金腐蚀性能的影响
  • (3) 揭示了LZ91镁锂合金的腐蚀机理,探索了有效提高镁锂合金耐腐蚀性的加工工艺
  • 本文以LZ91镁锂合金为研究对象,通过电子探针显微分析、浸泡实验和电化学实验研究了锻造和轧制变形加工对LZ91镁锂合金微观组织和腐蚀行为的影响。研究结果表明,LZ91合金锻造后,β-Li相的面积分数不变,晶粒尺寸减小。LZ91合金锻造后轧制(FR-LZ91),β-Li相的面积分数最高,晶粒沿轧制方向拉长。LZ91合金锻造后晶粒细化,晶界增多阻碍了浸泡过程中合金的腐蚀,提高了合金的耐腐蚀性。在所有实验合金中,FR-LZ91合金的腐蚀膜电阻和电荷转移电阻值最高,表明其具有最优的耐腐蚀性能,这是因为β-Li相高的面积分数促进了合金表面保护性产物膜的生成,阻碍了合金腐蚀。
  • Research Article

    Influence of deformation on the corrosion behavior of LZ91 Mg–Li alloy

    + Author Affiliations
    • The effect of rolling and forging on the microstructure and corrosion behavior of LZ91 alloy was investigated using an electron probe micro-analyzer, immersion and electrochemical tests. Results showed that the area fraction of the β-Li phase remained unchanged, and the grain size of the β-Li phase decreased after forging. The as-rolled forged alloy (FR-LZ91) exhibited the highest area fraction of the β-Li phase and the longest grains. The corrosion resistance of the forged LZ91 alloy increased due to grain refinement that prevented further corrosion during the immersion test. Among the experimental alloys, FR-LZ91 showed the highest resistance of corrosion film and charge transfer resistance values due to its protective film caused by the high area fraction of the β-Li phase.
    • loading
    • [1]
      W. Tao, M.L. Zhang, and R.Z. Wu, Effect of cerium on microstructure and mechanical properties of Mg–8Li–3Al alloy, J. Rare Earths, 25(2007), Suppl. 2, p. 194.
      [2]
      F. Guo, L.Y. Jiang, Y.L. Ma, et al., Strengthening a dual-phase Mg–Li alloy by strain-induced phase transformation at room temperature, Scripta. Mater., 179(2020), p. 16. doi: 10.1016/j.scriptamat.2020.01.001
      [3]
      H. Haferkamp, M. Niemeyer, R. Boehm, U. Holzkamp, C. Jaschik, and V. Kaese, Development, processing and applications range of magnesium lithium alloys, Mater. Sci. Forum, 350-351(2000), p. 31. doi: 10.4028/www.scientific.net/MSF.350-351.31
      [4]
      P. Metenier, G. González-Doncel, O.A. Ruano, J. Wolfenstine, and O.D. Sherby, Superplastic behavior of a fine-grained two-phase Mg–9wt.%Li alloy, Mater. Sci. Eng. A, 125(1990), No. 2, p. 195. doi: 10.1016/0921-5093(90)90169-4
      [5]
      Y. Yang, X. Chen, J.F. Nie, et al., Achieving ultra-strong Magnesium–lithium alloys by low-strain rotary swaging, Mater. Res. Lett., 9(2021), No. 6, p. 255. doi: 10.1080/21663831.2021.1891150
      [6]
      Z.M. Hua, M. Zha, Z.Y. Meng, et al., Rapid dislocation-mediated solute repartitioning towards strain-aging hardening in a fine-grained dilute magnesium alloy, Mater. Res. Lett., 10(2022), No. 1, p. 21. doi: 10.1080/21663831.2021.2009585
      [7]
      Y.Q. He, C.Q. Peng, Y. Feng, R.C. Wang, and J.F. Zhong, Effects of alloying elements on the microstructure and corrosion behavior of Mg–Li–Al–Y alloys, J. Alloys Compd., 834(2020), art. No. 154344. doi: 10.1016/j.jallcom.2020.154344
      [8]
      G.Y. Sha, X.G. Sun, T. Liu, Y.H. Zhu, and T. Yu, Effects of Sc addition and annealing treatment on the microstructure and mechanical properties of the as-rolled Mg–3Li alloy, J. Mater. Sci. Technol., 27(2011), No. 8, p. 753. doi: 10.1016/S1005-0302(11)60138-2
      [9]
      H. Takuda, H. Matsusaka, S. Kikuchi, and K. Kubota, Tensile properties of a few Mg–Li–Zn alloy thin sheets, J. Mater. Sci., 37(2002), No. 1, p. 51. doi: 10.1023/A:1013133521947
      [10]
      Y.W. Song, D.Y. Shan, R.S. Chen, and E.H. Han, Corrosion characterization of Mg–8Li alloy in NaCl solution, Corros. Sci., 51(2009), No. 5, p. 1087. doi: 10.1016/j.corsci.2009.03.011
      [11]
      A.V. Koltygin, V.E. Bazhenov, R.S. Khasenova, A.A. Komissarov, A.I. Bazlov, and V.A. Bautin, Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 858. doi: 10.1007/s12613-019-1801-1
      [12]
      Z.L. Zhao Y.H. Li, Y.F. Zhong, and Y.D. Liu, Corrosion performance of as-rolled Mg–8Li–xAl alloys, Int. J. Electrochem. Sci., 14(2019), p. 6394. doi: 10.20964/2019.07.55
      [13]
      Y.M. Wan, J.W. Liu, R.H. Yuan, M.H. Dai, and P.Y. Liu, Research of bio-corrosion behavior on as-cast LZ91 alloy, Min. Metall. Eng., 36(2016), No. 1, p. 117.
      [14]
      A. Bahmani, S. Arthanari, and K.S. Shin, Achieving a high corrosion resistant and high strength magnesium alloy using multi directional forging, J. Alloys Compd., 856(2021), art. No. 158077. doi: 10.1016/j.jallcom.2020.158077
      [15]
      F.F. Cao, K.K. Deng, K.B. Nie, J.W. Kang, and H.Y. Niu, Microstructure and corrosion properties of Mg–4Zn–2Gd–0.5Ca alloy influenced by multidirectional forging, J. Alloys Compd., 770(2019), p. 1208. doi: 10.1016/j.jallcom.2018.08.191
      [16]
      F.Y. Cao, Z.M. Shi, G.L. Song, M. Liu, M.S. Dargusch, and A. Atrens, Influence of hot rolling on the corrosion behavior of several Mg–X alloys, Corros. Sci., 90(2015), p. 176. doi: 10.1016/j.corsci.2014.10.012
      [17]
      C. Zhang, L. Wu, G.S. Huang, G.G. Wang, B. Jiang, and F.S. Pan, Microstructure and corrosion properties of Mg–0.5Zn–0.2Ca–0.2Ce alloy with different processing conditions, Rare Met., 40(2021), No. 7, p. 1924. doi: 10.1007/s12598-020-01478-2
      [18]
      T. Abu Leil, N. Hort, W. Dietzel, et al., Microstructure and corrosion behavior of Mg–Sn–Ca alloys after extrusion, Trans. Nonferrous Met. Soc. China, 19(2009), No. 1, p. 40. doi: 10.1016/S1003-6326(08)60225-3
      [19]
      D. Merson, E. Vasiliev, M. Markushev, and A. Vinogradov, On the corrosion of ZK60 magnesium alloy after severe plastic deformation, Lett. Mater., 7(2017), No. 4, p. 421. doi: 10.22226/2410-3535-2017-4-421-427
      [20]
      A. Siahsarani, F. Samadpour, M.H. Mortazavi, and G. Faraji, Microstructural, mechanical and corrosion properties of AZ91 magnesium alloy processed by a severe plastic deformation method of hydrostatic cyclic expansion extrusion, Met. Mater. Int., 27(2021), No. 8, p. 2933. doi: 10.1007/s12540-020-00828-0
      [21]
      T. Mineta and H. Sato, Simultaneously improved mechanical properties and corrosion resistance of Mg–Li–Al alloy produced by severe plastic deformation, Mater. Sci. Eng. A, 735(2018), p. 418. doi: 10.1016/j.msea.2018.08.077
      [22]
      W. Xu, N. Birbilis, G. Sha, et al., A high-specific-strength and corrosion-resistant magnesium alloy, Nat. Mater., 14(2015), No. 12, p. 1229. doi: 10.1038/nmat4435
      [23]
      D. Orlov, K.D. Ralston, N. Birbilis, and Y. Estrin, Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing, Acta Mater., 59(2011), No. 15, p. 6176. doi: 10.1016/j.actamat.2011.06.033
      [24]
      Q. Xiang, B. Jiang, Y.X. Zhang, et al., Effect of rolling-induced microstructure on corrosion behaviour of an as-extruded Mg–5Li–1Al alloy sheet, Corros. Sci., 119(2017), p. 14. doi: 10.1016/j.corsci.2017.02.009
      [25]
      ASTM International, ASTM G31-72: Standard Practice for Laboratory Immersion Corrosion Testing of Metals, ASTM International, West Conshohocken, 2004.
      [26]
      M.Q. Gao, Z.N. Chen, H.J. Kang, et al., Microstructural characteristics and mechanical behavior of B4Cp/6061Al composites synthesized at different hot-pressing temperatures, J. Mater. Sci. Technol., 35(2019), No. 8, p. 1523. doi: 10.1016/j.jmst.2019.03.040
      [27]
      J.Y. Wang, Mechanical properties of room temperature rolled MgLiAlZn alloy, J. Alloys Compd., 485(2009), No. 1-2, p. 241. doi: 10.1016/j.jallcom.2009.06.047
      [28]
      C.Q. Li, D.K. Xu, B.J. Wang, L.Y. Sheng, Y.X. Qiao, and E.H. Han, Natural ageing responses of duplex structured Mg-Li based alloys, Sci. Rep., 7(2017), art. No. 40078. doi: 10.1038/srep40078
      [29]
      A. Yamamoto, T. Ashida, Y. Kouta, K. Kim, S. Fukumoto, and H. Tsubakino, Precipitation in Mg–(4–13)%Li–(4–5)%Zn ternary alloys, J. Jpn. Inst. Light. Met., 51(2001), No. 11, p. 604. doi: 10.2464/jilm.51.604
      [30]
      L.N. Ma, Y. Yang, G. Zhou, et al., Effect of rolling reduction and annealing process on microstructure and corrosion behavior of LZ91 alloy sheet, Trans. Nonferrous Met. Soc. China, 30(2020), No. 7, p. 1816. doi: 10.1016/S1003-6326(20)65341-9
      [31]
      Y.H. Sun, R.C. Wang, C.Q. Peng, and X.F. Wang, Microstructure and corrosion behavior of as-homogenized Mg–xLi–3Al–2Zn–0.2Zr alloys (x = 5, 8, 11 wt%), Mater. Charact., 159(2020), art. No. 110031. doi: 10.1016/j.matchar.2019.110031
      [32]
      B.J. Wang, K. Xu, D.K. Xu, X. Cai, Y.X. Qiao, and L.Y. Sheng, Anisotropic corrosion behavior of hot-rolled Mg–8 wt.%Li alloy, J. Mater. Sci. Technol., 53(2020), p. 102. doi: 10.1016/j.jmst.2020.04.029
      [33]
      S. Jabbarzare, H.R. Bakhsheshi-Rad, A.A. Nourbakhsh, T. Ahmadi, and F. Berto, Effect of graphene oxide on the corrosion, mechanical and biological properties of Mg-based nanocomposite, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 305. doi: 10.1007/s12613-020-2201-2
      [34]
      Z.M. Shi, M. Liu, and A. Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corros. Sci., 52(2010), No. 2, p. 579. doi: 10.1016/j.corsci.2009.10.016
      [35]
      N.I.Z. Abidin, A.D. Atrens, D. Martin, and A. Atrens, Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37°C, Corros. Sci., 53(2011), No. 11, p. 3542. doi: 10.1016/j.corsci.2011.06.030
      [36]
      R.C. Zeng, L. Sun, Y.F. Zheng, H.Z. Cui, and E.H. Han, Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: The influence of microstructural features, Corros. Sci., 79(2014), p. 69. doi: 10.1016/j.corsci.2013.10.028
      [37]
      X. Liu, J.L. Xue, and S.Z. Liu, Discharge and corrosion behaviors of the α-Mg and β-Li based Mg alloys for Mg-air batteries at different current densities, Mater. Des., 160(2018), p. 138. doi: 10.1016/j.matdes.2018.09.011
      [38]
      B.J. Wang, D.K. Xu, X. Cai, Y.X. Qiao, and L.Y. Sheng, Effect of rolling ratios on the microstructural evolution and corrosion performance of an as-rolled Mg–8 wt.%Li alloy, J. Magnes. Alloys, 9(2021), No. 2, p. 560. doi: 10.1016/j.jma.2020.02.020
      [39]
      P.P. Wu, G.L. Song, Y.X. Zhu, Z.L. Feng, and D.J. Zheng, The corrosion of Al-supersaturated Mg matrix and the galvanic effect of secondary phase nanoparticles, Corros. Sci., 184(2021), art. No. 109410. doi: 10.1016/j.corsci.2021.109410
      [40]
      Q. Liu, W.L. Cheng, H. Zhang, C.X. Xu, and J.S. Zhang, The role of Ca on the microstructure and corrosion behavior of Mg–8Sn–1Al–1Zn–Ca alloys, J. Alloys Compd., 590(2014), p. 162. doi: 10.1016/j.jallcom.2013.12.077
      [41]
      C.Q. Li, Y.B. He, and H.P. Huang, Effect of lithium content on the mechanical and corrosion behaviors of HCP binary Mg–Li alloys, J. Magnes. Alloys, 9(2021), No. 2, p. 569. doi: 10.1016/j.jma.2020.02.022
      [42]
      H.B. Yang, L. Wu, B. Jiang, et al., Discharge properties of Mg–Sn–Y alloys as anodes for Mg-air batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1705. doi: 10.1007/s12613-021-2258-6
      [43]
      K.B. Tayyab, A. Farooq, A.A. Alvi, A.B. Nadeem, and K.M. Deen, Corrosion behavior of cold-rolled and post heat-treated 316L stainless steel in 0.9wt% NaCl solution, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 440. doi: 10.1007/s12613-020-2054-8
      [44]
      J.F. Wang, Y. Li, S. Huang, and X.E. Zhou, Study of the corrosion behavior and the corrosion films formed on the surfaces of Mg–xSn alloys in 3.5wt.% NaCl solution, Appl. Surf. Sci., 317(2014), p. 1143. doi: 10.1016/j.apsusc.2014.09.040
      [45]
      S. Tang, T.Z. Xin, W.Q. Xu, et al., The composition-dependent oxidation film formation in Mg–Li–Al alloys, Corros. Sci., 187(2021), art. No. 109508. doi: 10.1016/j.corsci.2021.109508
      [46]
      C.Q. Li, D.K. Xu, Z.R. Zhang, and E.H. Han, Influence of the lithium content on the negative difference effect of Mg–Li alloys, J. Mater. Sci. Technol., 57(2020), p. 138. doi: 10.1016/j.jmst.2020.03.046
      [47]
      Y.W. Song, D.Y. Shan, R.S. Chen, and E.H. Han, Investigation of surface oxide film on magnesium lithium alloy, J. Alloys Compd., 484(2009), No. 1-2, p. 585. doi: 10.1016/j.jallcom.2009.04.137
      [48]
      L.H. Yang, Q.T. Jiang, M. Zheng, B.R. Hou, and Y.T. Li, Corrosion behavior of Mg–8Li–3Zn–Al alloy in neutral 3.5% NaCl solution, J. Magnes. Alloys, 4(2016), No. 1, p. 22. doi: 10.1016/j.jma.2015.12.002
      [49]
      Z.Y. Ding, L.Y. Cui, R.C. Zeng, et al., Exfoliation corrosion of extruded Mg–Li–Ca alloy, J. Mater. Sci. Technol., 34(2018), No. 9, p. 1550. doi: 10.1016/j.jmst.2018.05.014
      [50]
      D. Dhamodharan, P. Bhagat Singh, and S. Kumaran, Effect of grain size and secondary particle refinement on corrosion behavior of cross-rolled Mg–Li–Ca alloy, Trans. Indian Inst. Met., 72(2019), No. 6, p. 1631. doi: 10.1007/s12666-019-01721-0
      [51]
      A. Dobkowska, B. Adamczyk-Cieślak, J. Kubásek, et al., Microstructure and corrosion resistance of a duplex structured Mg–7.5Li–3Al–1Zn, J. Magnes. Alloys, 9(2021), No. 2, p. 467. doi: 10.1016/j.jma.2020.07.007

    Catalog


    • /

      返回文章
      返回