留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 5
Apr.  2022

图(9)

数据统计

分享

计量
  • 文章访问数:  1538
  • HTML全文浏览量:  383
  • PDF下载量:  53
  • 被引次数: 0
Jianjian Zhong, Lu Qin, Jianling Li, Zhe Yang, Kai Yang,  and Mingjie Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1061-1072. https://doi.org/10.1007/s12613-022-2469-5
Cite this article as:
Jianjian Zhong, Lu Qin, Jianling Li, Zhe Yang, Kai Yang,  and Mingjie Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1061-1072. https://doi.org/10.1007/s12613-022-2469-5
引用本文 PDF XML SpringerLink
研究论文

锂离子电容器用MOF衍生硒化钼修饰的Ti3C2Tx负极材料性能研究

  • 通讯作者:

    李建玲    E-mail: lijianling@ustb.edu.cn

文章亮点

  • (1) 原位生长于Ti3C2Tx材料的MOF衍生MoSe2颗粒起支柱作用并提供赝电容贡献。
  • (2) 快速锂离子扩散和优异导电性赋予材料卓越的电化学反应动力学和高容量性能。
  • (3) 快速的电极动力学促使材料在2.0 mV·s–1大扫速下表现出86.0%的优异电容贡献率。
  • 二维碳化钛Ti3C2Tx材料由于其独特的层状结构、优异的电子电导率和高比表面积,在锂离子电容器中表现出优异的倍率性能和循环性能。然而,作为类石墨烯材料,在电化学长循环过程中氢键作用和范德华力作用引起Ti3C2Tx材料的重堆叠效应,导致材料比表面积减小,增加了材料层间的电解质离子扩散距离,恶化了材料的电化学反应动力学。因此,本文采用溶剂热法成功将MOF结构衍生的过渡金属硒化物MoSe2原位引入Ti3C2Tx材料结构中,以改善材料的电化学性能。MoSe2材料具有特殊的三层原子层堆叠结构,其快速的锂离子扩散能力、在材料层间的支柱作用以及Ti3C2Tx材料自身的杰出导电性相互协同作用,赋予材料优异的电化学反应动力学特性和高容量。Ti3C2Tx@MoSe2复合材料在150 mA·g–1电流密度下比容量超过300 mAh·g–1,并表现出优异的倍率特性,在1500 mA·g–1电流密度下具有150 mAh·g–1的比容量。同时,快速的电化学反应使Ti3C2Tx@MoSe2复合材料在2.0 mV·s–1扫速下表现出86.0%的优异电容贡献率。以复合材料作为负极构建的Ti3C2Tx@MoSe2//AC锂离子电容器也表现出优异的循环稳定性。
  • Research Article

    MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors

    + Author Affiliations
    • Two-dimensional Ti3C2Tx exhibits outstanding rate property and cycle performance in lithium-ion capacitors (LICs) due to its unique layered structure, excellent electronic conductivity, and high specific surface area. However, like graphene, Ti3C2Tx restacks during electrochemical cycling due to hydrogen bonding or van der Waals forces, leading to a decrease in the specific surface area and an increase in the diffusion distance of electrolyte ions between the interlayer of the material. Here, a transition metal selenide MoSe2 with a special three-stacked atomic layered structure, derived from metal–organic framework (MOF), is introduced into the Ti3C2Tx structure through a solvothermal method. The synergic effects of rapid Li+ diffusion and pillaring effect from the MoSe2 and excellent conductivity from the Ti3C2Tx sheets endow the material with excellent electrochemical reaction kinetics and capacity. The composite Ti3C2Tx@MoSe2 material exhibits a high capacity over 300 mAh·g−1 at 150 mA·g−1 and excellent rate property with a specific capacity of 150 mAh·g−1 at 1500 mA·g−1. Additionally, the material shows a superior capacitive contribution of 86.0% at 2.0 mV·s−1 due to the fast electrochemical reactions. A Ti3C2Tx@MoSe2//AC LIC device is also fabricated and exhibits stable cycle performance.
    • loading
    • Supplementary Information10.1007s12613-022-2469-5.docx
    • [1]
      Q.B. Zhang, Y.C. Liu, and X.B. Ji, Editorial for special issue on advanced materials for energy storage and conversion, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1545. doi: 10.1007/s12613-021-2354-7
      [2]
      L.H. Liu, N. Li, J.R. Han, K.L. Yao, and H.Y. Liang, Multicomponent transition metal phosphide for oxygen evolution, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 503. doi: 10.1007/s12613-021-2352-9
      [3]
      M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J.J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23(2011), No. 37, p. 4248. doi: 10.1002/adma.201102306
      [4]
      M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, 25th anniversary article: MXenes: A new family of two-dimensional materials, Adv. Mater., 26(2014), No. 7, p. 992. doi: 10.1002/adma.201304138
      [5]
      C.E. Shuck and Y. Gogotsi, Taking MXenes from the lab to commercial products, Chem. Eng. J., 401(2020), art. No. 125786. doi: 10.1016/j.cej.2020.125786
      [6]
      M.R. Lukatskaya, S. Kota, Z.F. Lin, M.Q. Zhao, N. Shpigel, M.D. Levi, J. Halim, P.L. Taberna, M.W. Barsoum, P. Simon, and Y. Gogotsi, Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, Nat. Energy, 2(2017), art. No. 17105. doi: 10.1038/nenergy.2017.105
      [7]
      Y.P. Tian, C.H. Yang, W.X. Que, X.B. Liu, X.T. Yin, and L.B. Kong, Flexible and free-standing 2D titanium carbide film decorated with manganese oxide nanoparticles as a high volumetric capacity electrode for supercapacitor, J. Power Sources, 359(2017), p. 332. doi: 10.1016/j.jpowsour.2017.05.081
      [8]
      L. Li, N. Zhang, M.Y. Zhang, L.L. Wu, X.T. Zhang, and Z.G. Zhang, Ag-nanoparticle-decorated 2D titanium carbide (MXene) with superior electrochemical performance for supercapacitors, ACS Sustainable Chem. Eng., 6(2018), No. 6, p. 7442. doi: 10.1021/acssuschemeng.8b00047
      [9]
      A. Byeon, A.M. Glushenkov, B. Anasori, P. Urbankowski, J.W. Li, B.W. Byles, B. Blake, K.L. Van Aken, S. Kota, E. Pomerantseva, J.W. Lee, Y. Chen, and Y. Gogotsi, Lithium-ion capacitors with 2D Nb2CTx (MXene)—Carbon nanotube electrodes, J. Power Sources, 326(2016), p. 686. doi: 10.1016/j.jpowsour.2016.03.066
      [10]
      M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, and Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene), Adv. Mater., 28(2016), No. 7, p. 1517. doi: 10.1002/adma.201504705
      [11]
      J.J. Shi, Y.X. Hou, Z.Y. Liu, Y.F. Zheng, L. Wen, J. Su, L.Y. Li, N.S. Liu, Z. Zhang, and Y.H. Gao, The high-performance MoO3−x/MXene cathodes for zinc-ion batteries based on oxygen vacancies and electrolyte engineering, Nano Energy, 91(2022), art. No. 106651. doi: 10.1016/j.nanoen.2021.106651
      [12]
      Z.Y. Li, G.R. Chen, J. Deng, D. Li, T.T. Yan, Z.X. An, L.Y. Shi, and D.S. Zhang, Creating sandwich-like Ti3C2/TiO2/rGO as anode materials with high energy and power density for Li-ion hybrid capacitors, ACS Sustainable Chem. Eng., 7(2019), No. 18, p. 15394. doi: 10.1021/acssuschemeng.9b02849
      [13]
      Y.T. Liu, X.D. Zhu, and L. Pan, Hybrid architectures based on 2D MXenes and low-dimensional inorganic nanostructures: Methods, synergies, and energy-related applications, Small, 14(2018), No. 51, art. No. 1803632. doi: 10.1002/smll.201803632
      [14]
      Y.M. Wang, X. Wang, X.L. Li, R. Liu, Y. Bai, H.H. Xiao, Y. Liu, and G.H. Yuan, Intercalating ultrathin MoO3 nanobelts into MXene film with ultrahigh volumetric capacitance and excellent deformation for high-energy-density devices, Nano-Micro Lett., 12(2020), No. 1, art. No. 115. doi: 10.1007/s40820-020-00450-0
      [15]
      Q. Zhao, Q.Z. Zhu, J.W. Miao, P. Zhang, P.B. Wan, L.Z. He, and B. Xu, Flexible 3D porous MXene foam for high-performance lithium-ion batteries, Small, 15(2019), No. 51, p. e1904293. doi: 10.1002/smll.201904293
      [16]
      M.J. Shi, B. Wang, C. Chen, J.W. Lang, C. Yan, and X.B. Yan, 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries, J. Mater. Chem. A, 8(2020), No. 46, p. 24635. doi: 10.1039/D0TA09085A
      [17]
      X. Yang, Y.W. Yao, Q. Wang, K. Zhu, K. Ye, G.L. Wang, D.X. Cao, and J. Yan, 3D macroporous oxidation-resistant Ti3C2Tx MXene hybrid hydrogels for enhanced supercapacitive performances with ultralong cycle life, Adv. Funct. Mater., 32(2022), No. 10, art. No. 2109479. doi: 10.1002/adfm.202109479
      [18]
      Z.L. Wang, J.R. Bai, H.Y. Xu, G. Chen, S.F. Kang, and X. Li, Synthesis of three-dimensional Sn@Ti3C2 by layer-by-layer self-assembly for high-performance lithium-ion storage, J. Colloid Interface Sci., 577(2020), p. 329. doi: 10.1016/j.jcis.2020.05.035
      [19]
      Y. Xia, L.F. Que, F.D. Yu, L. Deng, C. Liu, X.L. Sui, L. Zhao, and Z.B. Wang, Boosting ion/e transfer of Ti3C2 via interlayered and interfacial co-modification for high-performance Li-ion capacitors, Chem. Eng. J., 404(2021), art. No. 127116. doi: 10.1016/j.cej.2020.127116
      [20]
      M.J. Shi, P. Xiao, J.W. Lang, C. Yan, and X.B. Yan, Porous g-C3N4 and MXene dual-confined FeOOH quantum dots for superior energy storage in an ionic liquid, Adv. Sci., 7(2020), No. 2, art. No. 1901975. doi: 10.1002/advs.201901975
      [21]
      J.M. Luo, J.H. Zheng, J.W. Nai, C.B. Jin, H.D. Yuan, O.W. Sheng, Y.J. Liu, R.Y. Fang, W.K. Zhang, H. Huang, Y.P. Gan, Y. Xia, C. Liang, J. Zhang, W.Y. Li, and X.Y. Tao, Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance, Adv. Funct. Mater., 29(2019), No. 10, art. No. 1808107. doi: 10.1002/adfm.201808107
      [22]
      J.M. Luo, W.K. Zhang, H.D. Yuan, C.B. Jin, L.Y. Zhang, H. Huang, C. Liang, Y. Xia, J. Zhang, Y.P. Gan, and X.Y. Tao, Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors, ACS Nano, 11(2017), No. 3, p. 2459. doi: 10.1021/acsnano.6b07668
      [23]
      O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, and Y. Gogotsi, Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun., 4(2013), art. No. 1716. doi: 10.1038/ncomms2664
      [24]
      E.Z. Xu, P.C. Li, J.J. Quan, H.W. Zhu, L. Wang, Y.J. Chang, Z.J. Sun, L. Chen, D.B. Yu, and Y. Jiang, Dimensional gradient structure of CoSe2@CNTs–MXene anode assisted by ether for high-capacity, stable sodium storage, Nano-Micro Lett., 13(2021), No. 1, art. No. 40. doi: 10.1007/s40820-020-00562-7
      [25]
      H.X. Chao, H.Q. Qin, M.D. Zhang, Y.C. Huang, L.F. Cao, H.L. Guo, K. Wang, X.L. Teng, J.K. Cheng, Y.K. Lu, H. Hu, and M.B. Wu, Boosting the pseudocapacitive and high mass-loaded lithium/sodium storage through bonding polyoxometalate nanoparticles on MXene nanosheets, Adv. Funct. Mater., 31(2021), No. 16, art. No. 2007636. doi: 10.1002/adfm.202007636
      [26]
      B. Cao, H. Liu, X. Zhang, P. Zhang, Q.Z. Zhu, H.L. Du, L.L. Wang, R.P. Zhang, and B. Xu, MOF-derived ZnS nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance, Nano-Micro Lett., 13(2021), No. 1, art. No. 202. doi: 10.1007/s40820-021-00728-x
      [27]
      H. Wang, X.Y. Wang, L. Wang, J. Wang, D.L. Jiang, G.P. Li, Y. Zhang, H.H. Zhong, and Y. Jiang, Phase transition mechanism and electrochemical properties of nanocrystalline MoSe2 as anode materials for the high performance lithium-ion battery, J. Phys. Chem. C, 119(2015), No. 19, p. 10197. doi: 10.1021/acs.jpcc.5b00353
      [28]
      J. Morales, J. Santos, and J.L. Tirado, Electrochemical studies of lithium and sodium intercalation in MoSe2, Solid State Ionics, 83(1996), No. 1-2, p. 57. doi: 10.1016/0167-2738(95)00234-0
      [29]
      Z.G. Zou, Q. Wang, J. Yan, K. Zhu, K. Ye, G.L. Wang, and D.X. Cao, Versatile interfacial self-assembly of Ti3C2Tx MXene based composites with enhanced kinetics for superior lithium and sodium storage, ACS Nano, 15(2021), No. 7, p. 12140. doi: 10.1021/acsnano.1c03516
      [30]
      Z.X. Wang, Z. Xu, H.C. Huang, X. Chu, Y.T. Xie, D. Xiong, C. Yan, H.B. Zhao, H.T. Zhang, and W.Q. Yang, Unraveling and regulating self-discharge behavior of Ti3C2Tx MXene-based supercapacitors, ACS Nano, 14(2020), No. 4, p. 4916. doi: 10.1021/acsnano.0c01056
      [31]
      Y.J. Gong, S.B. Yang, L. Zhan, L.L. Ma, R. Vajtai, and P.M. Ajayan, A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage, Adv. Funct. Mater., 24(2014), No. 1, p. 125. doi: 10.1002/adfm.201300844
      [32]
      F. Sagane, T. Abe, and Z. Ogumi, Li+-ion transfer through the interface between Li+-ion conductive ceramic electrolyte and Li+-ion-concentrated propylene carbonate solution, J. Phys. Chem. C, 113(2009), No. 46, p. 20135. doi: 10.1021/jp908623c
      [33]
      Z. Wang, T. Chen, W.X. Chen, K. Chang, L. Ma, G.C. Huang, D.Y. Chen, and J.Y. Lee, CTAB-assisted synthesis of single-layer MoS2–graphene composites as anode materials of Li-ion batteries, J. Mater. Chem. A, 1(2013), No. 6, p. 2202. doi: 10.1039/C2TA00598K
      [34]
      Y. Liu, M.Q. Zhu, and D. Chen, Sheet-like MoSe2/C composites with enhanced Li-ion storage properties, J. Mater. Chem. A, 3(2015), No. 22, p. 11857. doi: 10.1039/C5TA02100F
      [35]
      V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7(2014), No. 5, p. 1597. doi: 10.1039/c3ee44164d
      [36]
      H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, and S. E. Lindquist, Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films, J. Phys. Chem. B, 101(1997), No. 39, p. 7717. doi: 10.1021/jp970490q
      [37]
      J. Wang, J. Polleux, J. Lim, and B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J. Phys. Chem. C, 111(2007), No. 40, p. 14925. doi: 10.1021/jp074464w

    Catalog


    • /

      返回文章
      返回