留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 2
Feb.  2023

图(10)  / 表(9)

数据统计

分享

计量
  • 文章访问数:  761
  • HTML全文浏览量:  279
  • PDF下载量:  55
  • 被引次数: 0
Deepak Nayak, Tonmoy Kundu, Nilima Dash, Shiva Kumar I. Angadi, S.K. Chaurasiya, G.E. Sreedhar, T.V.S. Subrahmanyam, and Swagat S. Rath, Evaluation of VSK separation in the classification of two mineralogically different iron ore fines, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 260-270. https://doi.org/10.1007/s12613-022-2471-y
Cite this article as:
Deepak Nayak, Tonmoy Kundu, Nilima Dash, Shiva Kumar I. Angadi, S.K. Chaurasiya, G.E. Sreedhar, T.V.S. Subrahmanyam, and Swagat S. Rath, Evaluation of VSK separation in the classification of two mineralogically different iron ore fines, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 260-270. https://doi.org/10.1007/s12613-022-2471-y
引用本文 PDF XML SpringerLink
研究论文

VSK分选在两种低品位铁矿粉分级中的应用评估

  • 通讯作者:

    Swagat S. Rath    E-mail: ssrath@immt.res.in

  • 低品位铁矿粉曾经主要被认为是废弃物。然而,随着对高级铁矿石需求的不断增加和铁品位的逐渐降低,目前铁矿石行业正把重点放在低品位铁矿粉的选矿上。此外,由于许多矿点缺水和各国政府新的节水政策,必须研究适当的干式选矿路线。本文评估了干式分级装置(VSK分离机)在提高两种低品位印度铁矿粉(样品1和样品2)铁含量方面的效果。矿物学研究(包括扫描电子显微镜和X射线衍射)表明,样品1是一个低品位的蓝色粉尘样品(51.2wt% Fe),样品2(53.3wt% Fe)中除赤铁矿和石英外,还含有针铁矿。采用Box–Benkhen统计设计进行了试验,结果表明,风机转速是VSK分离器中对产品质量影响最大的运行参数,其次是进料速率。在最佳操作因子水平下,样品1可得到含~55wt%铁的细粒产品,产率为~40%,而样品2可在产率为~85%的情况下升级为~56wt%铁。结果表明,VSK分选机可作为选矿回路中一种有效的中间单元操作,提高铁矿粉的含铁量。
  • Research Article

    Evaluation of VSK separation in the classification of two mineralogically different iron ore fines

    + Author Affiliations
    • With gradually diminishing Fe grade in tandem with the ever-increasing demand for high-grade iron ores, iron ore industries are now focusing on the beneficiation of low-grade iron ore fines, mainly considered waste. Besides, the scarcity of water at many of the mines’ sites and the new water conservation policies of the governments have necessitated research on suitable dry beneficiation routes. In this context, an effort has been made to evaluate the efficacy of a dry classification unit, such as the VSK separator, in upgrading the iron values of two low-grade Indian iron ore fines, named Sample 1 and Sample 2. The mineralogical studies, involving scanning electron microscopy and X-ray diffraction, suggest that Sample 1 is a low-grade blue dust sample (51.2wt% Fe) containing hematite and quartz as the major minerals, while Sample 2 (53.3wt% Fe) shows the presence of goethite in addition to hematite and quartz. The experiments, carried out using Box–Benkhen statistical design, indicate that blower speed, followed by feed rate, is the most influencing operating parameter in obtaining a good product in the VSK separator. At optimum levels of the operating factors, a fines product with ~55wt% Fe at a yield of ~40% can be obtained from Sample 1, while Sample 2 can be upgraded to ~56wt% Fe at a yield of ~85%. The results suggest that the VSK separator can be employed as an efficient intermediate unit operation in a processing circuit to upgrade the iron contents of iron ore fines.
    • loading
    • [1]
      U.S. Geological Survey, Mineral Commodity Summaries 2021, U.S. Geological Survey, Reston, 2021, p. 200.
      [2]
      N. Ray, D. Nayak, N. Dash, and S.S. Rath, Utilization of low-grade banded hematite jasper ores: Recovery of iron values and production of ferrosilicon, Clean Technol. Environ. Policy, 20(2018), No. 8, p. 1761. doi: 10.1007/s10098-018-1566-7
      [3]
      S.K. Roy, D. Nayak, and S.S. Rath, A review on the enrichment of iron values of low-grade Iron ore resources using reduction roasting-magnetic separation, Powder Technol., 367(2020), p. 796. doi: 10.1016/j.powtec.2020.04.047
      [4]
      S.S. Rath, H. Sahoo, and B. Das, Optimization of flotation variables for the recovery of hematite particles from BHQ ore, Int. J. Miner. Metall. Mater., 20(2013), No. 7, p. 605. doi: 10.1007/s12613-013-0773-9
      [5]
      S. Mahiuddin, S. Bondyopadhway, and J.N. Baruah, A study on the beneficiation of Indian iron-ore fines and slime using chemical additives, Int. J. Miner. Process., 26(1989), No. 3-4, p. 285. doi: 10.1016/0301-7516(89)90034-3
      [6]
      M.P. Srivastava, S.K. Pan, N. Prasad, and B.K. Mishra, Characterization and processing of iron ore fines of Kiriburu deposit of India, Int. J. Miner. Process., 61(2001), No. 2, p. 93. doi: 10.1016/S0301-7516(00)00030-2
      [7]
      H.J. Haselhuhn, J.J. Carlson, and S.K. Kawatra, Water chemistry analysis of an industrial selective flocculation dispersion hematite ore concentrator plant, Int. J. Miner. Process., 102-103(2012), p. 99. doi: 10.1016/j.minpro.2011.10.002
      [8]
      P. Dixit, D. Makhija, A.K. Mukherjee, V. Singh, A. Bhatanagar, and R.K. Rath, Characterization and beneficiation of dry iron ore processing plant reject fines to produce sinter/pellet grade iron ore concentrate, Min. Metall. Explor., 36(2019), No. 2, p. 451. doi: 10.1007/s42461-018-0006-x
      [9]
      K. Tudu, S. Pal, and N.R. Mandre, Comparison of selective flocculation of low grade goethitic iron ore fines using natural and synthetic polymers and a graft copolymer, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 498. doi: 10.1007/s12613-018-1596-5
      [10]
      G. Jimbo, M. Yamazaki, J. Tsubaki, and T.S. Suh, Mechanism of classification in a sturtevant-type air classifier, Chem. Eng. Commun., 34(1985), No. 1-6, p. 37. doi: 10.1080/00986448508911185
      [11]
      S.K. Tripathy, P.K. Banerjee, N. Suresh, Y.R. Murthy, and V. Singh, Dry high-intensity magnetic separation in mineral industry—A review of present status and future prospects, Miner. Process. Extr. Metall. Rev., 38(2017), No. 6, p. 339. doi: 10.1080/08827508.2017.1323743
      [12]
      V. Nunna, S. Hapugoda, S.G. Eswarappa, S.K. Raparla, M.I. Pownceby, and G.J. Sparrow, Evaluation of dry processing technologies for treating low grade lateritic iron ore fines, Miner. Process. Extr. Metall. Rev., 43(2022), No. 3, p. 283. doi: 10.1080/08827508.2020.1837127
      [13]
      T. Kundu, S.K. Das, S.K. Tripathy, and S.I. Angadi, Performance evaluation of the VSK separator for treating mineral fines, Miner. Eng., 167(2021), art. No. 106883. doi: 10.1016/j.mineng.2021.106883
      [14]
      P.B. Fu, Y.L. Fang, L. Ma, X. Jiang, Y. Liu, W.J. Lv, Y. Huang, L. Wang, J.P. Li, and H.L. Wang, Air acceleration classification for the enhancement of spent catalyst activity classification, Sep. Purif. Technol., 223(2019), p. 31. doi: 10.1016/j.seppur.2019.04.037
      [15]
      K. Heiskanen, Particle Classification, Chapman and Hall, London, 1993.
      [16]
      R. Srinivasan and V. Singh, Physical properties that govern fiber separation from distillers dried grains with solubles (DDGS) using sieving and air classification, Sep. Purif. Technol., 61(2008), No. 3, p. 461. doi: 10.1016/j.seppur.2008.01.002
      [17]
      R.A. Kleiv, Value enhancement of olivine process dust through air classification, Int. J. Miner. Metall. Mater., 19(2012), No. 3, p. 185. doi: 10.1007/s12613-012-0536-z
      [18]
      O. Altun and H. Benzer, Selection and mathematical modelling of high efficiency air classifiers, Powder Technol., 264(2014), p. 1. doi: 10.1016/j.powtec.2014.05.013
      [19]
      L. Karunakumari, C. Eswaraiah, S. Jayanti, and S.S. Narayanan, Experimental and numerical study of a rotating wheel air classifier, AIChE J., 51(2005), No. 3, p. 776. doi: 10.1002/aic.10349
      [20]
      C. Eswaraiah, S.S. Narayanan, and S. Jayanti, A reduced efficiency approach-based process model for a circulating air classifier, Chem. Eng. Process.: Process. Intensif., 47(2008), No. 9-10, p. 1887. doi: 10.1016/j.cep.2007.10.016
      [21]
      J. Muscolino, Mechanical centrifugal: Air classifiers, Chem. Eng., 117(2010), No. 12, p. 48.
      [22]
      H. Li, Y.Q. He, J.S. Yang, X.N. Zhu, Z. Peng, and J.D. Yu, Segregation of coal particles in air classifier: Effect of particle size and density, Energy Sources Part A, 40(2018), No. 11, p. 1332. doi: 10.1080/15567036.2018.1475521
      [23]
      W.H. Duda, Cement Data Book: International Process Engineering in the Cement Industry, 3rd Edition, French & European Pubns, 1985.
      [24]
      S. Routray and R.B. Rao, Classification studies in an advanced air classifier, J. Inst. Eng. India Ser. D, 97(2016), No. 2, p. 129. doi: 10.1007/s40033-015-0105-5
      [25]
      T. Laxmi and B. Rao, Beneficiation studies on Teri sands, Tamilnadu by using advanced air cyclone classifier, J. Min. Metall. Sect. A, 50(2014), No. 1, p. 37.
      [26]
      F.P. van der Meer, Feasibility of dry high pressure grinding and classification, [in] SAG Conference 2011, Vancouver, 2011.
      [27]
      O. Altun, H. Benzer, H. Dundar, and N.A. Aydogan, Comparison of open and closed circuit HPGR application on dry grinding circuit performance, Miner. Eng., 24(2011), No. 3-4, p. 267. doi: 10.1016/j.mineng.2010.08.024
      [28]
      A. Martı́nez-L, A. Uribe S, F.R. Carrillo P, J. Coreño A, and J.C. Ortiz, Study of celestite flotation efficiency using sodium dodecyl sulfonate collector: Factorial experiment and statistical analysis of data, Int. J. Miner. Process., 70(2003), No. 1-4, p. 83. doi: 10.1016/S0301-7516(02)00152-7
      [29]
      N. Aslan, Modeling and optimization of Multi-Gravity Separator to produce celestite concentrate, Powder Technol., 174(2007), No. 3, p. 127. doi: 10.1016/j.powtec.2007.01.007
      [30]
      N. Aslan and Y. Cebeci, Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals, Fuel, 86(2007), No. 1-2, p. 90. doi: 10.1016/j.fuel.2006.06.010
      [31]
      R.C. Chaurasia and S. Nikkam, Beneficiation of low-grade iron ore fines by multi-gravity separator (MGS) using optimization studies, Part. Sci. Technol., 35(2017), No. 1, p. 45. doi: 10.1080/02726351.2015.1124161
      [32]
      R.C. Chaurasia and S. Nikkam, Optimization studies on a multi-gravity separator treating ultrafine coal, Int. J. Coal Prep. Util., 37(2017), No. 4, p. 195. doi: 10.1080/19392699.2016.1149474
      [33]
      S.K. Jena, N. Dash, and S.S. Rath, Effective utilization of lime mud for the recovery of potash from mica scraps, J. Clean. Prod., 231(2019), p. 64. doi: 10.1016/j.jclepro.2019.05.231

    Catalog


    • /

      返回文章
      返回