留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 1
Jan.  2023

图(12)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  714
  • HTML全文浏览量:  207
  • PDF下载量:  67
  • 被引次数: 0
Jinshu Xie, Zhi Zhang, Shujuan Liu, Jinghuai Zhang, Jun Wang, Yuying He, Liwei Lu, Yunlei Jiao, and Ruizhi Wu, Designing new low alloyed Mg–RE alloys with high strength and ductility via high-speed extrusion, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 82-91. https://doi.org/10.1007/s12613-022-2472-x
Cite this article as:
Jinshu Xie, Zhi Zhang, Shujuan Liu, Jinghuai Zhang, Jun Wang, Yuying He, Liwei Lu, Yunlei Jiao, and Ruizhi Wu, Designing new low alloyed Mg–RE alloys with high strength and ductility via high-speed extrusion, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 82-91. https://doi.org/10.1007/s12613-022-2472-x
引用本文 PDF XML SpringerLink
研究论文

通过高速挤压开发新型低合金化高强塑Mg–RE合金

  • 通讯作者:

    张景怀    E-mail: zhangjinghuai@hrbeu.edu.cn

    王军    E-mail: nafion412@163.com

    卢立伟    E-mail: cqullw@163.com

文章亮点

  • (1) 新型低合金化Mg–RE合金可在相对高的挤压速度下大规模生产。
  • (2) 新型低合金化Mg–RE的室温力学性能明显高于AZ31合金。
  • (3) 新型合金具有良好的高温强度,远高于AZ31合金。
  • 镁合金绝对强度强度低、室温塑性差,耐热性差等问题严重影响了其进一步广泛应用。在现今国家“碳达峰、碳中和”战略下,大力开发轻质低合金化镁合金大势所趋。在本工作中,开发了两种新的低合金化Mg–2RE–0.8Mn–0.6Ca–0.5Zn (wt%,RE = Sm或Y)合金,可通过相对高速挤压在工业规模上生产。这两种合金不仅在可挤压性方面与商业AZ31合金相当,而且具有优异的机械性能,特别是在屈服强度(YS)方面。优异的可挤压性与两种铸态合金的较粗的第二相颗粒和较高的初始熔点有关。高强度–韧性主要来自细晶粒、纳米间距亚微米/纳米沉淀和弱织构的形成。此外,值得注意的是,两种合金的YS在250°C的高温下可保持在160 MPa以上,显著高于AZ31合金(YS: 45 MPa)。晶界处的Zn/Ca溶质偏析、RE固溶以及高熔点的强化颗粒(Mn, MgZn2, Mg–Zn–RE/Mg–Zn–RE–Ca) 是镁合金获得优异高温强度的主要原因。
  • Research Article

    Designing new low alloyed Mg–RE alloys with high strength and ductility via high-speed extrusion

    + Author Affiliations
    • Two new low-alloyed Mg–2RE–0.8Mn–0.6Ca–0.5Zn (wt%, RE = Sm or Y) alloys are developed, which can be produced on an industrial scale via relatively high-speed extrusion. These two alloys are not only comparable to commercial AZ31 alloy in extrudability, but also have superior mechanical properties, especially in terms of yield strength (YS). The excellent extrudability is related to less coarse second-phase particles and high initial melting point of the two as-cast alloys. The high strength–ductility mainly comes from the formation of fine grains, nano-spaced submicron/nano precipitates, and weak texture. Moreover, it is worth noting that the YS of the two alloys can maintain above 160 MPa at elevated temperature of 250°C, significantly higher than that of AZ31 alloy (YS: 45 MPa). The Zn/Ca solute segregation at grain boundaries, the improved heat resistance of matrix due to addition of RE, and the high melting points of strengthening particles (Mn, MgZn2, and Mg–Zn–RE/Mg–Zn–RE–Ca) are mainly responsible for the excellent high-temperature strength.
    • loading
    • [1]
      Z. Zhang, J.H. Zhang, J. Wang, et al., Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [2]
      J.H. Zhang, S.J. Liu, R.Z. Wu, L.G. Hou, and M.L. Zhang, Recent developments in high-strength Mg–RE-based alloys: Focusing on Mg–Gd and Mg–Y systems, J. Magnes. Alloys, 6(2018), No. 3, p. 277. doi: 10.1016/j.jma.2018.08.001
      [3]
      M.F. Qi, L.Y. Wei, Y.Z. Xu, et al., Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg–2Zn–0.1Mn–0.3Ca–xY biological magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1746. doi: 10.1007/s12613-021-2327-x
      [4]
      B.C. Suh, M.S. Shim, K.S. Shin, and N.J. Kim, Current issues in magnesium sheet alloys: Where do we go from here? Scripta Mater., 84-85(2014), p. 1. doi: 10.1016/j.scriptamat.2014.04.017
      [5]
      J.S. Xie, J.H. Zhang, Z. Zhang, et al., New insights on the different corrosion mechanisms of Mg alloys with solute-enriched stacking faults or long period stacking ordered phase, Corros. Sci., 198(2022), art. No. 110163. doi: 10.1016/j.corsci.2022.110163
      [6]
      L.X. Hong, R.X. Wang, and X.B. Zhang, Effects of Nd on microstructure and mechanical properties of as-cast Mg–12Gd–2Zn–xNd–0.4Zr alloys with stacking faults, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1570. doi: 10.1007/s12613-021-2264-8
      [7]
      H. Wu and G.H. Fan, An overview of tailoring strain delocalization for strength–ductility synergy, Prog. Mater. Sci., 113(2020), art. No. 100675. doi: 10.1016/j.pmatsci.2020.100675
      [8]
      J. Han, C. Wang, Y.M. Song, Z.Y. Liu, J.P. Sun, and J.Y. Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1551. doi: 10.1007/s12613-021-2294-2
      [9]
      K. Yang, H.C. Pan, S. Du, et al., Low-cost and high-strength Mg–Al–Ca–Zn–Mn wrought alloy with balanced ductility, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1396. doi: 10.1007/s12613-021-2395-y
      [10]
      M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen, and S. Kamado, High-speed extrusion of dilute Mg–Zn–Ca–Mn alloys and its effect on microstructure, texture and mechanical properties, Mater. Sci. Eng. A, 678(2016), p. 329. doi: 10.1016/j.msea.2016.10.007
      [11]
      H.B. Yang, Y.F. Chai, B. Jiang, et al., Enhanced mechanical properties of Mg–3Al–1Zn alloy sheets through slope extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1343. doi: 10.1007/s12613-021-2370-7
      [12]
      T. Nakata, T. Mezaki, R. Ajima, et al., High-speed extrusion of heat-treatable Mg–Al–Ca–Mn dilute alloy, Scripta Mater., 101(2015), p. 28. doi: 10.1016/j.scriptamat.2015.01.010
      [13]
      M.G. Jiang, C. Xu, T. Nakata, H. Yan, R.S. Chen, and S. Kamado, Rare earth texture and improved ductility in a Mg–Zn–Gd alloy after high-speed extrusion, Mater. Sci. Eng. A, 667(2016), p. 233. doi: 10.1016/j.msea.2016.04.093
      [14]
      W.L. Cheng, M. Wang, Z.P. Que, et al., Microstructure and mechanical properties of high speed indirect-extruded Mg–5Sn–(1,2,4)Zn alloys, J. Central South Univ., 20(2013), No. 10, p. 2643. doi: 10.1007/s11771-013-1779-1
      [15]
      F.Z. Meng, S.H. Lv, Q. Yang, et al., Multiplex intermetallic phases in a gravity die-cast Mg–6.0Zn–1.5Nd–0.5Zr (wt%) alloy, J. Magnes. Alloys, 10(2022), No. 1, p. 209. doi: 10.1016/j.jma.2020.10.005
      [16]
      S.H. Park, S.H. Kim, H.S. Kim, J. Yoon, and B.S. You, High-speed indirect extrusion of Mg–Sn–Al–Zn alloy and its influence on microstructure and mechanical properties, J. Alloys Compd., 667(2016), p. 170. doi: 10.1016/j.jallcom.2016.01.163
      [17]
      Z.R. Zeng, Y.M. Zhu, J.F. Nie, S.W. Xu, C.H.J. Davies, and N. Birbilis, Effects of calcium on strength and microstructural evolution of extruded alloys based on Mg–3Al–1Zn–0.3Mn, Metall. Mater. Trans. A, 50(2019), No. 9, p. 4344. doi: 10.1007/s11661-019-05318-6
      [18]
      U.M. Chaudry, K. Hamad, and Y.G. Ko, Effect of calcium on the superplastic behavior of AZ31 magnesium alloy, Mater. Sci. Eng. A, 815(2021), art. No. 140874. doi: 10.1016/j.msea.2021.140874
      [19]
      Y.H. Luo, W.L. Cheng, H. Yu, et al., Tailoring the microstructural characteristics and enhancing creep properties of as-cast Mg–5Bi–5Sn alloy through Mn addition, J. Magnes. Alloys, 2022. https://doi.org/10.1016/j.jma.2021.12.004
      [20]
      J.S. Xie, J.H. Zhang, Z.H. You, et al., Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying, J. Magnes. Alloys, 9(2021), No. 1, p. 41. doi: 10.1016/j.jma.2020.08.016
      [21]
      P. Peng, A.T. Tang, J. She, et al., Significant improvement in yield stress of Mg–Gd–Mn alloy by forming bimodal grain structure, Mater. Sci. Eng. A, 803(2021), art. No. 140569. doi: 10.1016/j.msea.2020.140569
      [22]
      S.C. Jin, J.W. Cha, S.H. Joo, and S.H. Park, Enhancing tensile strength and ductility of high-speed-extruded Mg–5Bi–2Al through trace Mn addition, Mater. Charact., 181(2021), art. No. 111500. doi: 10.1016/j.matchar.2021.111500
      [23]
      Z. Zhang, J.H. Zhang, J.S. Xie, et al., Developing a low-alloyed fine-grained Mg alloy with high strength–ductility based on dislocation evolution and grain boundary segregation, Scripta Mater., 209(2022), art. No. 114414. doi: 10.1016/j.scriptamat.2021.114414
      [24]
      T.T.T. Trang, J.H. Zhang, J.H. Kim, et al., Designing a magnesium alloy with high strength and high formability, Nat. Commun., 9(2018), art. No. 2522. doi: 10.1038/s41467-018-04981-4
      [25]
      Z. Zhang, J.H. Zhang, J.S. Xie, et al., Significantly enhanced grain boundary Zn and Ca co-segregation of dilute Mg alloy via trace Sm addition, Mater. Sci. Eng. A, 831(2022), art. No. 142259. doi: 10.1016/j.msea.2021.142259
      [26]
      D.B. Williams and C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed., Springer, New York, 2009.
      [27]
      P. Peng, J. She, A.T. Tang, et al., A strategy to regulate the microstructure and properties of Mg–2.0Zn–1.5Mn magnesium alloy by tracing the existence of Mn element, J. Alloys Compd., 890(2022), art. No. 161789. doi: 10.1016/j.jallcom.2021.161789
      [28]
      H.C. Pan, G.W. Qin, Y.M. Huang, et al., Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength, Acta Mater., 149(2018), p. 350. doi: 10.1016/j.actamat.2018.03.002
      [29]
      K. Zhang, Z.T. Shao, C.S. Daniel, et al., A comparative study of plastic deformation mechanisms in room-temperature and cryogenically deformed magnesium alloy AZ31, Mater. Sci. Eng. A, 807(2021), art. No. 140821. doi: 10.1016/j.msea.2021.140821
      [30]
      R. Ni, S.J. Ma, L.J. Long, et al., Effects of precipitate on the slip activity and plastic heterogeneity of Mg–11Y–5Gd–2Zn–0.5Zr (wt. %) during room temperature compression, Mater. Sci. Eng. A, 804(2021), art. No. 140738. doi: 10.1016/j.msea.2021.140738
      [31]
      A. Imandoust, C.D. Barrett, A.L. Oppedal, W.R. Whittington, Y. Paudel, and H.E. Kadiri, Nucleation and preferential growth mechanism of recrystallization texture in high purity binary magnesium–rare earth alloys, Acta Mater., 138(2017), p. 27. doi: 10.1016/j.actamat.2017.07.038
      [32]
      Z. Koren, H. Rosenson, E.M. Gutman, Y.B. Unigovski, and A. Eliezer, Development of semisolid casting for AZ91 and AM50 magnesium alloys, J. Light Met., 2(2002), No. 2, p. 81. doi: 10.1016/S1471-5317(02)00026-3
      [33]
      E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. Sect. B, 64(1951), No. 9, p. 747. doi: 10.1088/0370-1301/64/9/303
      [34]
      J. Zhao, B. Jiang, Q.S. Wang, et al., Effects of Li addition on microstructures and tensile properties of the extruded Mg–1Zn–xLi alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1380. doi: 10.1007/s12613-021-2340-0
      [35]
      J.F. Nie, Precipitation and hardening in magnesium alloys, Metall. Mater. Trans. A, 43(2012), No. 11, p. 3891. doi: 10.1007/s11661-012-1217-2
      [36]
      R. Alizadeh, J.Y. Wang, and J. LLorca, Precipitate strengthening of pyramidal slip in Mg–Zn alloys, Mater. Sci. Eng. A, 804(2021), art. No. 140697. doi: 10.1016/j.msea.2020.140697
      [37]
      B. Kim, C.H. Hong, J.C. Kim, et al., Factors affecting the grain refinement of extruded Mg–6Zn–0.5Zr alloy by Ca addition, Scripta Mater., 187(2020), p. 24. doi: 10.1016/j.scriptamat.2020.06.001
      [38]
      J. Hu, Y.N. Shi, X. Sauvage, G. Sha, and K. Lu, Grain boundary stability governs hardening and softening in extremely fine nanograined metals, Science, 355(2017), No. 6331, p. 1292. doi: 10.1126/science.aal5166
      [39]
      M. Zha, H.M. Zhang, H.L. Jia, et al., Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al–7Mg alloy, Int. J. Plast., 146(2021), art. No. 103108. doi: 10.1016/j.ijplas.2021.103108
      [40]
      Z.H. Huang, L.Y. Wang, B.J. Zhou, T. Fischer, S.B. Yi, and X.Q. Zeng, Observation of non-basal slip in Mg–Y by in situ three-dimensional X-ray diffraction, Scripta Mater., 143(2018), p. 44. doi: 10.1016/j.scriptamat.2017.09.011
      [41]
      Z.X. Wu and W.A. Curtin, The origins of high hardening and low ductility in magnesium, Nature, 526(2015), No. 7571, p. 62. doi: 10.1038/nature15364
      [42]
      C. Zhang, L. Wu, G.S. Huang, G.G. Wang, B. Jiang, and F.S. Pan, Microstructure and corrosion properties of Mg–0.5Zn–0.2Ca–0.2Ce alloy with different processing conditions, Rare Met., 40(2021), No. 7, p. 1924. doi: 10.1007/s12598-020-01478-2
      [43]
      P.F. Qin, Q. Yang, Y.Y. He, et al., Microstructure and mechanical properties of high-strength high-pressure die-cast Mg–4Al–3La–1Ca–0.3Mn alloy, Rare Met., 40(2021), No. 10, p. 2956. doi: 10.1007/s12598-020-01661-5
      [44]
      C.M. Cepeda-Jiménez, J.M. Molina-Aldareguia, and M.T. Pérez-Prado, Effect of grain size on slip activity in pure magnesium polycrystals, Acta Mater., 84(2015), p. 443. doi: 10.1016/j.actamat.2014.10.001
      [45]
      H. Zhang, H.Y. Wang, J.G. Wang, et al., The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys, J. Alloys Compd., 780(2019), p. 312. doi: 10.1016/j.jallcom.2018.11.229
      [46]
      H.Y. Wang, Z.P. Yu, L. Zhang, et al., Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process, Sci. Rep., 5(2015), No. 1, art. No. 17100. doi: 10.1038/srep17100

    Catalog


    • /

      返回文章
      返回