Cite this article as: |
Volodymyr Shatokha, Modeling of the effect of hydrogen injection on blast furnace operation and carbon dioxide emissions, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1851-1861. https://doi.org/10.1007/s12613-022-2474-8 |
Volodymyr Shatokha E-mail: shatokha@metal.nmetau.edu.ua
[1] |
F. Patisson and O. Mirgaux, Hydrogen ironmaking: How it works, Metals, 10(2020), No. 7, art. No. 922. doi: 10.3390/met10070922
|
[2] |
C. Hoffmann, M.V. Hoey, and B. Zeumer, Decarbonization Challenge for Steel, McKinsey & Company [2020-06-03]. https://www.mckinsey.com/industries/metals-and-mining/our-insights/decarbonization-challenge-for-steel
|
[3] |
K. Nishioka, Y. Ujisawa, S. Tonomura, N. Ishiwata, and P. Sikstrom, Sustainable aspects of CO2 ultimate reduction in the steelmaking process (COURSE50 project), part 1: Hydrogen reduction in the blast furnace, J. Sustainable Metall., 2(2016), No. 3, p. 200. doi: 10.1007/s40831-016-0061-9
|
[4] |
T. Skoczkowski, E. Verdolini, S. Bielecki, M. Kochański, K. Korczak, and A. Węglarz, Technology innovation system analysis of decarbonisation options in the EU steel industry, Energy, 212(2020), art. No. 118688. doi: 10.1016/j.energy.2020.118688
|
[5] |
D. Kushnir, T. Hansen, V. Vogl, and M. Åhman, Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study, J. Cleaner Prod., 242(2020), art. No. 118185. doi: 10.1016/j.jclepro.2019.118185
|
[6] |
L. Holappa, A general vision for reduction of energy consumption and CO2 emissions from the steel industry, Metals, 10(2020), No. 9, art. No. 1117. doi: 10.3390/met10091117
|
[7] |
International Energy Agency (IEA), Iron and Steel Technology Roadmap: Towards more Sustainable Steelmaking, OECD/IEA, Paris, 2020.
|
[8] |
H.Y. Sohn, Energy consumption and CO2 emissions in ironmaking and development of a novel flash technology, Metals, 10(2019), No. 1, art. No. 54. doi: 10.3390/met10010054
|
[9] |
V. Schmies, Green Steel: Review of Phase 1 of the Injection Trials, Thyssenkrupp [2021-02-02]. https://engineered.thyssenkrupp.com/en/phase-1-of-the-injection-trials/
|
[10] |
Z.J. Tang, Z. Zheng, H.S. Chen, and K. He, The influence of hydrogen injection on the reduction process in the lower part of the blast furnace: A thermodynamic study, [in] A.A. Baba, L. Zhang, D.P. Guillen, N.R. Neelameggham, H. Peng, and Y.L. Zhong, eds., Energy Technology 2021: Carbon Dioxide Management and Other Technologies, Springer, Cham, 2021, p. 149.
|
[11] |
H. Nogami, Y. Kashiwaya, and D. Yamada, Simulation of blast furnace operation with intensive hydrogen injection, ISIJ Int., 52(2012), No. 8, p. 1523. doi: 10.2355/isijinternational.52.1523https://doi.org/10.2355/isijinternational.52.1523
|
[12] |
C. Yilmaz, J. Wendelstorf, and T. Turek, Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions, J. Cleaner Prod., 154(2017), p. 488. doi: 10.1016/j.jclepro.2017.03.162http://dx.doi.org/10.1016/j.jclepro.2017.03.162
|
[13] |
N. Barrett, P. Zulli, D. O’Dea, S. Mitra, and T. Honeyands, Replacement of pulverised coal injection (PCI) with hydrogen and its impact on blast furnace internal conditions, [in] Iron Ore Conference, Perth, 2021.
|
[14] |
J. Tang, M.S. Chu, F. Li, Z.D. Zhang, Y.T. Tang, Z.G. Liu, et al., Mathematical simulation and life cycle assessment of blast furnace operation with hydrogen injection under constant pulverized coal injection, J. Cleaner Prod., 278(2021), art. No. 123191. doi: 10.1016/j.jclepro.2020.123191http://dx.doi.org/10.1016/j.jclepro.2020.123191
|
[15] |
Y.T. Zhuo, Z.J. Hu, and Y.S. Shen, CFD study of hydrogen injection through tuyeres into ironmaking blast furnaces, Fuel, 302(2021), art. No. 120804. doi: 10.1016/j.fuel.2021.120804http://dx.doi.org/10.1016/j.fuel.2021.120804
|
[16] |
J.A. de Castro, C. Takano, and J.I. Yagi, A theoretical study using the multiphase numerical simulation technique for effective use of H2 as blast furnaces fuel, J. Mater. Res. Technol., 6(2017), No. 3, p. 258. doi: 10.1016/j.jmrt.2017.05.007
|
[17] |
B.I. Kitaev, Y.G. Yaroshenko, and V.D. Suchkov, Heat Exchange in Shaft Furnaces, Pergamon press, Oxford, 1967.
|
[18] |
J. Gustavsson, Reactions in the Lower Part of the Blast Furnace with Focus on Silicon [Dissertation], Royal Institute of Technology, Sweden, 2004, p. 70.
|
[19] |
Y. Hashimoto, Y. Sawa, Y. Kitamura, T. Nishino, and M. Kano, Development and validation of kinematical blast furnace model with long-term operation data, ISIJ Int., 58(2018), No. 12, p. 2210. doi: 10.2355/isijinternational.isijint-2018-177https://doi.org/10.2355/isijinternational.isijint-2018-177
|
[20] |
I.G. Tovarovskiy, Improvement and Optimization of Blast Furnace Operation Parameters, Metallurgiya, Moscow, 1987.
|
[21] |
K.M. Bugayev, Representativeness of The Blast Furnace Zonal Balance, Metall. Min. Ind., 1991, No. 4, p. 28.
|
[22] |
B.I. Kitayev, Blast Furnace Operation Control, UPI, Svierdlovsk, 1984.
|
[23] |
A.N. Ramm, Modern Blast Furnace Process, Metallurgiya, Moscow, 1980.
|
[24] |
V. Shatokha, Control of Hot Metal Quality Under Conditions of The Expansion of Fuel Base of Blast Furnace Ironmaking Based on Physicochemical Analysis of Slag Forming Processes [Dissertation], National Metallurgical Academy of Ukraine, Dnipropetrovsk, 1998, p. 304.
|
[25] |
K.H. Ma, J.Y. Deng, G. Wang, Q. Zhou, and J. Xu, Utilization and impacts of hydrogen in the ironmaking processes: A review from lab-scale basics to industrial practices, Int. J. Hydrogen Energy, 46(2021), No. 52, p. 26646. doi: 10.1016/j.ijhydene.2021.05.095https://doi.org/10.1016/j.ijhydene.2021.05.095
|
[26] |
E.F. Vegman, Blast Furnace Handbook, Metallurgiya, Moscow, 1981.
|
[27] |
S.A. Gavrilko, Study of The Effect of Physicochemical Properties of Fluxed Sinter on Smelting Processes in The Blast Furnace [Dissertation], Zaporozhie Industrial Institute, Zaporozhie, 1978, p. 199.
|
[28] |
S.V. Shavrin and A.V. Chentsov, On the choice of equations for the analysis of heat exchange in blast furnace, [in] Intensification of Blast Furnace: Proceeding of the Conference on Theoretical Problems of Ironmaking, Moscow, 1963, p. 169.
|
[29] |
Y.G. Yaroshenko and V.S. Shvydkyi, On the possible schemes of heat exchange in metallurgical shaft furnaces, Izvestiya Vuzov. Chernaya Metallurgiya, 1969, No. 10, p. 155.
|
[30] |
S. Watakabe, K. Miyagawa, S. Matsuzaki, T. Inada, Y. Tomita, K. Saito, et al., Operation trial of hydrogenous gas injection of COURSE50 project at an experimental blast furnace, ISIJ Int., 53(2013), No. 12, p. 2065. doi: 10.2355/isijinternational.53.2065https://doi.org/10.2355/isijinternational.53.2065
|
[31] |
N.A.Gladkov, Analysis of the experience of the use of combined blast, [in] Fundamental and Applied Problems of Ferrous Metallurgy, Collection of Scientific Works, Issue 20, Institute of Ferrous Metallurgy, Dnipropetrovsk, 2009, p. 36.
|
[32] |
Steelonthenet.com, European Met Coke Prices [2021-03-05]. https://www.steelonthenet.com/files/blast-furnace-coke.html
|
[33] |
Sgh2energy.com, Economics [2021-03-05]. https://www.sgh2energy.com/economics
|
[34] |
Hydrogen Council and McKinsey & Company, Hydrogen for Net-Zero: A Critical Cost-competitive Energy Vector, Hydrogen Council [2021-11-29]. https://hydrogencouncil.com/wp-content/uploads/2021/11/Hydrogen-for-Net-Zero.pdf
|
[35] |
K.M. Bugayev, Distribution of Gases in Blast Furnaces, Metallurgiya, Moscow, 1974.
|
[36] |
A.A. Himmelfarb amd K.I. Kotov, The Processes of Reduction and Slag Forming in Blast Furnaces, Metallurgiya, Moscow, 1982.
|
[37] |
A. Babich, D. Senk, H.W. Gudenau, and K.T. Mavrommatis, Ironmaking, Textbook, Mainz GmbH Aachen, Aachen, 2008.
|
[38] |
К.М. Bugayev, Oxidation of natural gas in near the tuyeres in blast furnace under various parameters of combined blast, Metall. Min. Ind., 1977, No. 1, p. 5.
|
[39] |
К.М. Bugayev, On the pyrolysis of natural gas in blast furnace, [in] Works of Donetsk Research and Development Institute of Ferrous Metallurgy. Ironmaking, Metallurgiya, Moscow, 1969, p. 123.
|