Cite this article as: |
Xianping Luo, Kunzhong He, Yan Zhang, Pengyu He, and Yongbing Zhang, A review of intelligent ore sorting technology and equipment development, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1647-1655. https://doi.org/10.1007/s12613-022-2477-5 |
罗仙平 E-mail: luoxianping9491@163.com
[1] |
L. Panda, P.K. Banerjee, S.K. Biswal, R. Venugopal, and N.R. Mandre, Artificial neural network approach to assess selective flocculation on hematite and kaolinite, Int. J. Miner. Metall. Mater., 21(2014), No. 7, p. 637. doi: 10.1007/s12613-014-0952-3
|
[2] |
G. Qian, On the development and utilization of low grade mineral resources, China Met. Bulletin., 2020, No. 1, p. 49.
|
[3] |
T. Henckens, Scarce mineral resources: Extraction, consumption and limits of sustainability, Resour. Conserv. Recycl., 169(2021), art. No. 105511. doi: 10.1016/j.resconrec.2021.105511
|
[4] |
J. Lessard, J. de Bakker, and L. McHugh, Development of ore sorting and its impact on mineral processing economics, Miner. Eng., 65(2014), p. 88. doi: 10.1016/j.mineng.2014.05.019
|
[5] |
X.P. Luo, X.H. Ning, T. Wang, P.C. Wang, and P.Y. He, Development and application of intelligent picking technology, Met. Mine, 2019, No. 7, p. 113.
|
[6] |
B. Sun, J.T. Dai, K.K. Huang, C.H. Yang, and W.H. Gui, Smart manufacturing of nonferrous metallurgical processes: Review and perspectives, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 611. doi: 10.1007/s12613-022-2448-x
|
[7] |
H. Wotruba and C. Robben, Sensor-based ore sorting in 2020, Automatisierungstechnik, 68(2020), No. 4, p. 231. doi: 10.1515/auto-2019-0060
|
[8] |
J. Lessard, W. Sweetser, K. Bartram, J. Figueroa, and L. McHugh, Bridging the gap: Understanding the economic impact of ore sorting on a mineral processing circuit, Miner. Eng., 91(2016), p. 92. doi: 10.1016/j.mineng.2015.08.019
|
[9] |
F. Zheng, Development of photoelectric sorter abroad, Nonferrous Met. Mineral Process., 1980, No. 2, p. 38.
|
[10] |
T. Ding, H.P. Xu, J.S. Wang, D.R. Liu and Z.W. Wang, Research of online ore sorter based on vision recognition technology, Equip. Manuf. Technol., 2014, No. 7, p. 106.
|
[11] |
Z.H. Wu, Ore pre concentration and discarding waste technology and selection of intelligent photoelectric beneficiation equipment, World Nonferrous Met., 2020, No. 16, p. 202.
|
[12] |
Robben and Wotruba, Sensor-based ore sorting technology in mining—Past, present and future, Minerals, 9(2019), No. 9, art. No. 523. doi: 10.3390/min9090523
|
[13] |
H. Wotruba and H. Harbeck, Sensor-based sorting, [in] Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, 2012.
|
[14] |
A. Cardenas-Vera, M. Hesse, R. Möckel, R. Gerhard Merker, T. Heinig, and Q.V. Phan, Investigation of Sensor-Based sorting and selective comminution for pre-concentration of an unusual parisite-rich REE ore, South Namxe, Vietnam, Miner. Eng., 177(2022), art. No. 107371. doi: 10.1016/j.mineng.2021.107371
|
[15] |
X.S. Wu, W. Zhang, X.K. Zhao, X. Gao and W.B. Huang, New development trend of sensor-based ore pre-concentration technology, China Min. Mag., 31(2022), No. 6, p. 10.
|
[16] |
D.Y. Zhu, D.Y. Liang, P.W. Shi, H.X. Ran, and H.L. Shang, Research and development of ore sorting technology and equipments, Min. Process. Equip., 44(2016), No. 7, p. 5.
|
[17] |
H.J. Wang, X.P. Liu, G. Wang, and S. Han, Optimization of mobile manipulator sorting path based on improved genetic algorithm, J. Beijing Univ. Posts Telecommun., 43(2020), No. 5, p. 34.
|
[18] |
Y.F. Wu, L.R. Gao, B. Zhang, H.N. Zhao, and J. Li, Real-time implementation of optimized maximum noise fraction transform for feature extraction of hyperspectral images, J. Appl. Remote Sensing, 8(2014), No. 1, art. No. 084797.
|
[19] |
S.W. Wu, J. Yang, and G.M. Cao, Prediction of the Charpy V-Notch impact energy of low carbon steel using a shallow neural network and deep learning, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1309. doi: 10.1007/s12613-020-2168-z
|
[20] |
M. Li, A. Caushaj, R. Silva, and D. Lowther, A neural network for electromagnetic based ore sorting, COMPEL Int. J. Comput. Math. Electr. Electron. Eng., 37(2018), No. 2, p. 691. doi: 10.1108/COMPEL-12-2016-0529
|
[21] |
C. Bergmann, Developments in Ore Sorting Technologies, Council for Mineral Technology, Randburg, 2009, p. 75.
|
[22] |
C.Y. Xu, The application of photoelectric color separator and the optimization in mineral separation process of some mine, World Nonferrous Met., 2016, No. 17, p. 31.
|
[23] |
X.X. Shao and X.P. Ji, Separation of talc by photoelectric separation technology, Nonmetallic Min., 1989, No. 5, p. 22.
|
[24] |
C. Robben, P. Condori, A. Pinto, R. Machaca, and A. Takala, X-ray-transmission based ore sorting at the San Rafael tin mine, Miner. Eng., 145(2020), art. No. 105870. doi: 10.1016/j.mineng.2019.105870
|
[25] |
X.W. Yu, M. Yang, S.R. Mao, F.T. Yu and T. He, Research on application of X-ray separation technology in beneficiation of phosphate rock, Ind. Miner. Process., 49(2020), No. 9, p. 31.
|
[26] |
N. Li, S.H. Zhang, H. Peng, L. Fu, and Y.J. Lu, Application practice and evaluation of photoelectric separation in a phosphate mining industry, Non Met. Mines, 41(2018), No. 2, p. 73.
|
[27] |
N. Jia, Discarding experiment on XRT ray brainpower separator in a scheelite concentrator in Hunan Province, Mod. Min., 34(2018), No. 7, p. 154.
|
[28] |
W. Peng and P.Y. He, Pre-selection test and practice of a antimony ore using the X-ray intelligent concentrator, Met. Mine, 2019, No. 9, p. 92.
|
[29] |
W.P. Di and Z.H. Wu, Preconcentration and discarding technology of intelligent photoelectric dressing equipment, Nonferrous Met. Miner. Process., 2021, No. 1, p. 117.
|
[30] |
H. Gao, J.Y. Wang, X.F. Zhang, and D.S. Zhao, Image processing design of mineral identification system based on dual-energy X-ray transmission, Nonferrous Met. Miner. Process., 2021, No. 1, p. 101.
|
[31] |
M.G. Xu and X.D. Bao, Object classification suppressed thickness effect based on pseudo dual-energy X-ray transmission imaging system, Chin. J. Electron Devices, 30(2007), No. 1, p. 219.
|
[32] |
L.N. Cui and X.Q. Peng, Test study on dual energy X-ray transmission pre-concentration of a low-grade lead–zinc mine in Guangxi, Min. Eng., 18(2020), No. 4, p. 30.
|
[33] |
Y. Tong, Technical Amenability Study of Laboratory-scale Sensor-based Ore Sorting On a Mississippi Valley Type Lead–Zinc Ore [Dissertation], University of British Columbia, Vancouver, 2012, p. 41.
|
[34] |
V. Rebuffel and J.M. Dinten, Dual-energy X-ray imaging: Benefits and limits, Insight Non Destr. Test. Cond. Monit., 49(2007), No. 10, p. 589. doi: 10.1784/insi.2007.49.10.589
|
[35] |
G.Z. Li, B. Klein, C.B. Sun, and J. Kou, Lab-scale error analysis on X-ray fluorecence sensing for bulk ore sorting, Miner. Eng., 164(2021), art. No. 106812. doi: 10.1016/j.mineng.2021.106812
|
[36] |
L.X. Li, G.Z. Li, H.Z. Li, G.Q. Li, D. Zhang, and B. Klein, Bench-scale insight into the amenability of case barren copper ores towards XRF-based bulk sorting, Miner. Eng., 121(2018), p. 129. doi: 10.1016/j.mineng.2018.02.023
|
[37] |
G.Z. Li, B. Klein, C.B. Sun, and J. Kou, Applying Receiver–Operating–Characteristic (ROC) to bulk ore sorting using XRF, Miner. Eng., 146(2020), art. No. 106117. doi: 10.1016/j.mineng.2019.106117
|
[38] |
W.Z. Yin, Y. Wu, Y.X. Han, et al., The theory and application of X-ray separation technology, China Min. Mag., 20(2011), No. 12, p. 88.
|
[39] |
M.B. Liu, W.Z. Yin, T.X. Han, and Z.Q. Sun, The study on the X-ray separator and its pre-sorting test of the low grade ore of Mo and Ni, Min. Metall., 21(2012), No. 4, p. 26.
|
[40] |
M. Dalm, M.W.N. Buxton, and F.J.A. Ruitenbeek, Ore–waste discrimination in epithermal deposits using near-infrared to short-wavelength infrared (NIR-SWIR) hyperspectral imagery, Math. Geosci., 51(2019), No. 7, p. 849. doi: 10.1007/s11004-018-9758-6
|
[41] |
E. Gülcan, A novel approach for sensor based sorting performance determination, Miner. Eng., 146(2020), art. No. 106130. doi: 10.1016/j.mineng.2019.106130
|
[42] |
Y.M. Liu, D. Chen, Q.F. Li, and K.X. Xu, Novel multi-scale modeling method for near infrared spectral measurement, Nanotechnol. Precis. Eng., 12(2014), No. 5, p. 381.
|
[43] |
M.R. Robben, H. Wotruba, and J. Heizmann, Sensor-based separation of carbonates, [in] IMPC 2012: XXVI International Mineral Processing Congress, New Delhi, 2012, p. 04496.
|
[44] |
S. Iyakwari, H.J. Glass, and P.B. Kowalczuk, Potential for near infrared sensor-based sorting of hydrothermally-formed minerals, J. Infrared Spectrosc., 21(2013), No. 3, p. 223. doi: 10.1255/jnirs.1049
|
[45] |
H. Huang, W.H. Ye, T.Z. Xiong, P.L. Hu, and J.S. Huang, Zone division scrap non-ferrous metal recognition algorithm based on dual energy X-ray transmission, Mach. Build. Autom., 48(2019), No. 4, p. 26.
|
[46] |
O. Udoudo, Modelling the Efficiency of an Automated Sensor-based Sorter [Dissertation], University of Exeter, Exeter, 2010.
|
[47] |
N.G. Cutmore, Y. Liu, and A.G. Middleton, On-line ore characterisation and sorting, Miner. Eng., 11(1998), No. 9, p. 843. doi: 10.1016/S0892-6875(98)00071-5
|
[48] |
M. Gaft, R. Reisfeld, and G. Panczer, Minerals radiometric sorting and online process control, [in] Modern Luminescence Spectroscopy of Minerals and Materials, Springer, Cham, 2015, p. 499.
|
[49] |
T.F. Wang and J.X. Yang, Online intelligent sorting method of gold ore based on LIBS technology, [in] H. Haeri, ed., Materials in Environmental Engineering, De Gruyter, 2017, p. 753.
|
[50] |
R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Mönch, L. Peter, and V. Sturm, Laser-induced breakdown spectrometry—Applications for production control and quality assurance in the steel industry, Spectrochim. Acta B: At. Spectrosc., 56(2001), No. 6, p. 637. doi: 10.1016/S0584-8547(01)00214-2
|
[51] |
J.M. Vadillo, S. Palanco, M.D. Romero, and J.J. Laserna, Applications of laser-induced breakdown spectrometry (LIBS) in surface analysis, Fresenius J. Anal. Chem., 355(1996), No. 7-8, p. 909.
|
[52] |
M. Sabsabi and P. Cielo, Quantitative analysis of aluminum alloys by laser-induced breakdown spectroscopy and plasma characterization, Appl. Spectrosc., 49(1995), No. 4, p. 499. doi: 10.1366/0003702953964408
|
[53] |
Q.M. Peng, M.Y. Yao, M.H. Liu, Z.J. Lei, Y. Xu, and T.B. Chen, Analysis of metal element Cr in fresh orange leaf using laser-induced breakdown spectroscopy, Acta Agric. Univ. Jiangxiensis, 34(2012), No. 2, p. 397.
|
[54] |
L.Z. Zahng, B.F. Ni, W.Z. Tian, et al., Status and development of prompt γ-ray neutron activation analysis, Atom. Energy Sci. Technol., 2005, No. 3, p. 282.
|
[55] |
T.A. Aarhaug, A. Ferber, O. Kjos, and H. Gaertner, Online monitoring of aluminium primary production gas composition by use of Fourier-transform infrared spectrometry, [in] Light Metals 2014, Springer, Cham, 2014, p. 647-652.
|
[56] |
Y. Qiu, B. Chen, and D.S. Jia, Development of application of infrared spectrometry, Environ. Sci. Surv., 27(2008), No. S1, p. 23.
|
[57] |
X.F. Zhang, W. Ni, J.Y. Wu, and L.P. Zhu, Hydration mechanism of a cementitious material prepared with Si−Mn slag, Int. J. Miner. Metall. Mater., 18(2011), No. 2, p. 234. doi: 10.1007/s12613-011-0428-7
|
[58] |
J. Moros, A. Gredilla, S. Fdez-Ortiz de Vallejuelo, A. de Diego, J.M. Madariaga, S. Garrigues, and M. de la Guardia, Partial least squares X-ray fluorescence determination of trace elements in sediments from the estuary of Nerbioi-Ibaizabal River, Talanta, 82(2010), No. 4, p. 1254. doi: 10.1016/j.talanta.2010.06.047
|
[59] |
L.Q. Luo, G.Z. Ma, A. Ji, C.L. Guo, X.C. Zhan, and G.L. Liang, Neural cluster structure with multiple component prediction based on back error propagation in X-ray fluorescence spectrometry, J. Anal. Sci., 14(1998), No. 3, p. 177.
|
[60] |
W.Y. Li, W.H. Ye, and T.Z. Xiong, Metal identification algorithm based on bp neural network for dual energy X-ray transmission, Nonferrous Met. Eng., 10(2020), No. 8, p. 124.
|
[61] |
L.Q. Luo, L. Gan, X.J. Wu, A. Ji, and G.L. Liang, Correction of nonlinear matrix effects by using an algorithm of combining neural networks with fundamental parameters, Chin. J. Anal. Lab., 20(2001), No. 1, p. 1.
|
[62] |
R.L. Man, X.N. Zhao, and A. Ji, Application of partial least-squares method in multicomponent analysis by portable radioisotope XRFS, Spectrosc. Spectr. Anal., 11(1991), No. 4, p. 50.
|
[63] |
L.Q. Luo, G.Z. Ma, and A. Ji, Study of partial least squares regression and fundamental parameters method in X-ray fluorescence analysis, Chin. J. Anal. Chem., 20(1992), No. 9, p. 1074.
|
[64] |
P. Urbański and E. Kowalska, Application of partial least-squares calibration methods in low-resolution EDXRS, X Ray Spectrom., 24(1995), No. 2, p. 70. doi: 10.1002/xrs.1300240209
|
[65] |
L. Wielopolski and R.P. Gardner, Development of the detector response function approach in the least-squares analysis of X-ray fluorescence spectra, Nucl. Instrum. Methods, 165(1979), No. 2, p. 297. doi: 10.1016/0029-554X(79)90285-4
|