Cite this article as: |
Lei Wang, Peimin Guo, Lingbing Kong, and Pei Zhao, Industrial application prospects and key issues of the pure-hydrogen reduction process, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1922-1931. https://doi.org/10.1007/s12613-022-2478-4 |
郭培民 E-mail: guopm@pku.org.cn
[1] |
D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, art. No. 1900108. doi: 10.1002/srin.201900108
|
[2] |
H. Xu, Z.S. Zou, Y.S. Zhou, Z.Y. Li, and A.B. Yu, Preliminary numerical simulation of shaft furnace process for DRI production, J. Mater. Metall., 8(2009), No. 1, p. 7.
|
[3] |
Z.W. Zhao, F.L. Kong, L.G. Tong, S.W. Yin, Y.R. Xie, and L.Wang, Analysis of CO2 emission reduction path and potential of China’s steel industry under the “3060 target”, Iron Steel, 57(2022), No. 2, p. 167.
|
[4] |
Z.Y. Xu and B.C. Wu, Simulating study on direct reduction of iron ore by midrex process, Gangtie, 22(1987), No. 12, p. 8.
|
[5] |
M.H. Bai and Y.X. Fu, Design method of reduction segment parameters of the gas-based direct reduction shaft furance, J. Iron. Steel Res., 27(2015), No. 9, p. 21.
|
[6] |
F. Li, M.S. Chu, J. Tang, and Z.G. Liu, Environmental impact analysis of hydrogen shaft furnace-electric furnace process, China Metall., 31(2021), No. 9, p. 104.
|
[7] |
S. Sarkar, R. Bhattacharya, G.G. Roy, and P.K. Sen, Modeling MIDREX based process configurations for energy and emission analysis, Steel Res. Int., 89(2018), No. 2, art. No. 1700248. doi: 10.1002/srin.201700248
|
[8] |
X.N. Wang, G.Q. Fu, W. Li, and M.Y. Zhu, Numerical simulation and optimization of flash reduction of iron ore particles with hydrogen-rich gases, Powder Technol., 366(2020), p. 587. doi: 10.1016/j.powtec.2020.02.075
|
[9] |
H. Hamadeh, O. Mirgaux, and F. Patisson, Detailed modeling of the direct reduction of iron ore in a shaft furnace, Materials (Basel), 11(2018), No. 10, art. No. 1865.
|
[10] |
M.S. Valipour, M.Y. Motamed Hashemi, and Y. Saboohi, Mathematical modeling of the reaction in an iron ore pellet using a mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide: An isothermal study, Adv. Powder Technol., 17(2006), No. 3, p. 277. doi: 10.1163/156855206777213375
|
[11] |
M. Kazemi, M.S. Pour, and S.C. Du, Experimental and modeling study on reduction of hematite pellets by hydrogen gas, Metall. Mater. Trans. B, 48(2017), No. 2, p. 1114. doi: 10.1007/s11663-016-0895-3
|
[12] |
F. Patisson and O. Mirgaux, Hydrogen ironmaking: How it works, Metals, 10(2020), No. 7, art. No. 922. doi: 10.3390/met10070922
|
[13] |
F.M. Mohsenzadeh, H. Payab, M.A. Abdoli, and Z. Abedi, An environmental study on Persian direct reduction (PERED®) technology: Comparing capital cost and energy saving with MIDREX® technology, Ekoloji, 27(2018), No. 106, p. 959.
|
[14] |
A. Bonalde, A. Henriquez, and M. Manrique, Kinetic analysis of the iron oxide reduction using hydrogen–carbon monoxide mixtures as reducing agent, ISIJ Int., 45(2005), No. 9, p. 1255. doi: 10.2355/isijinternational.45.1255
|
[15] |
J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
|
[16] |
A. Abdelrahim, M. Iljana, M. Omran, T. Vuolio, H. Bartusch, and T. Fabritius, Influence of H2–H2O content on the reduction of acid iron ore pellets in a CO–CO2–N2 reducing atmosphere, ISIJ Int., 60(2020), No. 10, p. 2206. doi: 10.2355/isijinternational.ISIJINT-2019-734
|
[17] |
B.L. Hou, H.Y. Zhang, H.Z. Li, and Q.S. Zhu, Study on kinetics of iron oxide reduction by hydrogen, Chin. J. Chem. Eng., 20(2012), No. 1, p. 10. doi: 10.1016/S1004-9541(12)60357-7
|
[18] |
P. Cavaliere, Direct reduced iron: Most efficient technologies for greenhouse emissions abatement, [in] Clean Ironmaking and Steelmaking Processes, Springer, Cham, 2019, p. 419.
|
[19] |
Y. Gordon and S. Kumar, Selection of ironmaking technology: Principles and risks, Trans. Indian Inst. Met., 66(2013), No. 5-6, p. 501. doi: 10.1007/s12666-013-0267-5
|
[20] |
X. Jiang, L. Wang, and F.M. Shen, Shaft furnace direct reduction technology—Midrex and energiron, Adv. Mater. Res., 805-806(2013), p. 654. doi: 10.4028/www.scientific.net/AMR.805-806.654
|
[21] |
P.M. Guo and P. Zhao, Theory and Technology for Fast Metallurgy at Low Temperature, Metallurgical Industry Press, Beijing, 2020, p. 111.
|
[22] |
W.G. Liu, H.B. Zuo, J.S. Wang, Q.G. Xue, B.L. Ren, and F. Yang, The production and application of hydrogen in steel industry, Int. J. Hydrogen. Energy, 46(2021), No. 17, p. 10548. doi: 10.1016/j.ijhydene.2020.12.123
|
[23] |
A. Bhaskar, M. Assadi, and H.N. Somehsaraei, Decarbonization of the iron and steel industry with direct reduction of iron ore with green hydrogen, Energies, 13(2020), No. 3, art. No. 758. doi: 10.3390/en13030758
|
[24] |
M. Ren, P.T. Lu, X.R. Liu, et al., Decarbonizing China's iron and steel industry from the supply and demand sides for carbon neutrality, Appl. Energy, 298(2021), art. No. 117209. doi: 10.1016/j.apenergy.2021.117209
|
[25] |
L. Shao, X.N. Zhang, C.X. Zhao, Y.X. Qu, H. Saxén, and Z.S. Zou, Computational analysis of hydrogen reduction of iron oxide pellets in a shaft furnace process, Renew. Energy, 179(2021), p. 1537. doi: 10.1016/j.renene.2021.07.108
|
[26] |
X.L. Wang, Metallurgy of Iron and Steel (Ironmaking), Metallurgical Industry Press, Beijing, 2009, p. 250.
|
[27] |
Midrex Technologies Inc., 2020 World Direct Reduction Statistics, Midrex Technologies Inc., Charlotte [2021-10-10]. https://www.midrex.com/wp-content/uploads/Midrex-STATSbookprint-2020.Final_.pdf
|
[28] |
X.Q. Zhang, The development trend of and suggestions for China’s hydrogen energy industry, Engineering, 7(2021), No. 6, p. 719. doi: 10.1016/j.eng.2021.04.012
|
[29] |
J.H. Niu, Research on the hydrogen production technology, IOP Conf. Ser.: Earth Environ. Sci., 813(2021), No. 1, art. No. 012004. doi: 10.1088/1755-1315/813/1/012004
|
[30] |
J. Yamabe, S. Matsuoka, and Y. Murakami, Surface coating with a high resistance to hydrogen entry under high-pressure hydrogen-gas environment, Int. J. Hydrogen Energy, 38(2013), No. 24, p. 10141. doi: 10.1016/j.ijhydene.2013.05.152
|
[31] |
J. Yamabe, O. Takakuwa, H. Matsunaga, H. Itoga, and S. Matsuoka, Hydrogen diffusivity and tensile-ductility loss of solution-treated austenitic stainless steels with external and internal hydrogen, Int. J. Hydrogen Energy, 42(2017), No. 18, p. 13289. doi: 10.1016/j.ijhydene.2017.04.055
|
[32] |
H.J. Guo. Metallurgical Physical Chemistry, Metallurgical Industry Press, Beijing, 2006, p.315.
|
[33] |
Y.J. Liang and Y.C. Che. Handbook of Inorganic Thermodynamic Data, Northeast University Press, Shenyang, 1993, p.151.
|
[34] |
D.L. Ye and J.H. Hu. Thermodynamic Data Manual of Practical Inorganic Chemistry, Metallurgical Industry Press, Beijing, 2002, p.569.
|
[35] |
R.C. John, A.D. Pelton, A.L. Young, W.T. Thompson, I.G. Wright, and T.M. Besmann, Assessing corrosion in oil refining and petrochemical processing, Mater. Res., 7(2004), No. 1, p. 163. doi: 10.1590/S1516-14392004000100022
|