留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 5
Apr.  2022

图(7)

数据统计

分享

计量
  • 文章访问数:  1384
  • HTML全文浏览量:  213
  • PDF下载量:  59
  • 被引次数: 0
Huaifang Shangand Dingguo Xia, Spinel LiMn2O4 integrated with coating and doping by Sn self-segregation, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 909-916. https://doi.org/10.1007/s12613-022-2482-8
Cite this article as:
Huaifang Shangand Dingguo Xia, Spinel LiMn2O4 integrated with coating and doping by Sn self-segregation, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 909-916. https://doi.org/10.1007/s12613-022-2482-8
引用本文 PDF XML SpringerLink
研究论文

LiMn2O4正极材料表面基于自偏析效应的包覆与掺杂一体化

  • 通讯作者:

    夏定国    E-mail: dgxia@pku.edu.cn

文章亮点

  • (1) 系统地研究了Sn含量对LiMn2O4形态结构的影响规律。
  • (2) 开发了放电性能优异的LMO–Snx (x = 0.01) 并采用石墨作为负极探究了改性材料在实际应用中的性能变化。
  • (3) 结合X射线吸收谱、俄歇电子能谱和X射线光电子能谱表征技术揭示了LiMn2O4电化学性能提升的作用机理。
  • 近年来,锂离子二次电池作为便携式电子产品和新能源汽车中重要的储能设备,在现代社会的发展中发挥着至关重要的作用。含钴或镍的层状正极材料具有高容量和高的工作电位,被认为是最有前途的高能锂离子电池阴极材料之一。 然而,由于钴和镍的成本高、资源有限,因此,开发高性能、低成本的正极材料对锂离子电池的发展具有重要意义。尖晶石锰酸锂(LiMn2O4)由于结构稳定、安全性好、运行电压高、成本低,成为商用可充电储能正极材料的主流。然而,由于Jahn–Teller效应引起的锰溶解导致LiMn2O4的容量衰减致使其在电动汽车动力电池中的应用一直受到限制。本文报道了通过Sn的自偏析在LiMn2O4中同时实现包覆和掺杂的结合,通过俄歇电子能谱和软X射线吸收谱的研究表明:包覆层为富Sn的LiMn2O4,而在体相中则有少量Sn掺杂。该整合策略不仅可以缓解Jahn–Teller扭曲,而且可以有效避免锰的溶解。改性后的材料在25°C和55°C条件下测试,其初始容量分别为124 mAh·g−1和120 mAh·g−1,循环50周后容量保持率分别为91.1%和90.2%。这种新型的材料加工方法为锂离子电池正极材料的发展指明了新的方向。
  • Research Article

    Spinel LiMn2O4 integrated with coating and doping by Sn self-segregation

    + Author Affiliations
    • The development of high-performance and low-cost cathode materials is of great significance for the progress in lithium-ion batteries. The use of Co and even Ni is not conducive to the sustainable and healthy development of the power battery industry owing to their high cost and limited resources. Here, we report LiMn2O4 integrated with coating and doping by Sn self-segregation. Auger electron energy spectrum and soft X-ray absorption spectrum show that the coating is Sn-rich LiMn2O4, with a small Sn doping in the bulk phase. The integration strategy can not only mitigate the Jahn–Teller distortion but also effectively avoid the dissolution of manganese. The as-obtained product demonstrates superior high initial capacities of 124 mAh·g−1 and 120 mAh·g−1 with the capacity retention of 91.1% and 90.2% at 25°C and 55°C after 50 cycles, respectively. This novel material-processing method highlights a new development direction for the progress of cathode materials for lithium-ion batteries.
    • loading
    • [1]
      J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), No. 6861, p. 359. doi: 10.1038/35104644
      [2]
      M. Li, J. Lu, Z.W. Chen, and K. Amine, 30 years of lithium-ion batteries, Adv. Mater., 30(2018), No. 33, art. No. 1800561. doi: 10.1002/adma.201800561
      [3]
      L.F. Wang, M.M. Geng, X.N. Ding, C. Fang, Y. Zhang, S.S. Shi, Y. Zheng, K. Yang, C. Zhan, and X.D. Wang, Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 538. doi: 10.1007/s12613-020-2218-6
      [4]
      Q.K. Du, Q.X. Wu, H.X. Wang, X.J. Meng, Z.K. Ji, S. Zhao, W.W. Zhu, C. Liu, M. Ling, and C.D. Liang, Carbon dot-modified silicon nanoparticles for lithium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1603. doi: 10.1007/s12613-020-2247-1
      [5]
      H.P. Yang, H.H. Wu, M.Y. Ge, L.J. Li, Y.F. Yuan, Q. Yao, J. Chen, L.F. Xia, J.M. Zheng, Z.Y. Chen, J.F. Duan, K. Kisslinger, X.C. Zeng, W.K. Lee, Q.B. Zhang, and J. Lu, Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries, Adv. Funct. Mater., 29(2019), No. 13, art. No. 1808825. doi: 10.1002/adfm.201808825
      [6]
      L.J. Li, J.X. Chen, H. Huang, L. Tan, L.B. Song, H.H. Wu, C. Wang, Z.X. Zhao, H.L. Yi, J.F. Duan, and T. Dong, Role of residual Li and oxygen vacancies in Ni-rich cathode materials, ACS Appl. Mater. Interfaces, 13(2021), No. 36, p. 42554. doi: 10.1021/acsami.1c06550
      [7]
      K. Turcheniuk, D. Bondarev, V. Singhal, and G. Yushin, Ten years left to redesign lithium-ion batteries, Nature, 559(2018), No. 7715, p. 467. doi: 10.1038/d41586-018-05752-3
      [8]
      M. Freire, N.V. Kosova, C. Jordy, D. Chateigner, O.I. Lebedev, A. Maignan, and V. Pralong, A new active Li–Mn–O compound for high energy density Li-ion batteries, Nat. Mater., 15(2016), No. 2, p. 173. doi: 10.1038/nmat4479
      [9]
      J. Lee, D.A. Kitchaev, D.H. Kwon, C.W. Lee, J.K. Papp, Y.S. Liu, Z.Y. Lun, R.J. Clément, T. Shi, B.D. McCloskey, J.H. Guo, M. Balasubramanian, and G. Ceder, Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials, Nature, 556(2018), No. 7700, p. 185. doi: 10.1038/s41586-018-0015-4
      [10]
      N. Nitta, F.X. Wu, J.T. Lee, and G. Yushin, Li-ion battery materials: Present and future, Mater. Today, 18(2015), No. 5, p. 252. doi: 10.1016/j.mattod.2014.10.040
      [11]
      H. Li, Z.X. Wang, L.Q. Chen, and X.J. Huang, Research on advanced materials for Li-ion batteries, Adv. Mater., 21(2009), No. 45, p. 4593. doi: 10.1002/adma.200901710
      [12]
      F. Li, J. He, J.D. Liu, M.G. Wu, Y.Y. Hou, H.P. Wang, S.H. Qi, Q.H. Liu, J.W. Hu, and J.M. Ma, Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries, Angew. Chem. Int. Ed., 60(2021), No. 12, p. 6600. doi: 10.1002/anie.202013993
      [13]
      S.H. Qi, H.P. Wang, J. He, J.D. Liu, C.Y. Cui, M.G. Wu, F. Li, Y.Z. Feng, and J.M. Ma, Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries, Sci. Bull., 66(2021), No. 7, p. 685. doi: 10.1016/j.scib.2020.09.018
      [14]
      D.P. Finegan, A. Vamvakeros, C. Tan, T.M.M. Heenan, S.R. Daemi, N. Seitzman, M.D. Michiel, S. Jacques, A.M. Beale, D.J.L. Brett, P.R. Shearing, and K. Smith, Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes, Nat. Commun., 11(2020), art. No. 631. doi: 10.1038/s41467-020-14467-x
      [15]
      F.Y. Cheng, H.B. Wang, Z.Q. Zhu, Y. Wang, T.R. Zhang, Z.L. Tao, and J. Chen, Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries, Energy Environ. Sci., 4(2011), No. 9, art. No. 3668. doi: 10.1039/c1ee01795k
      [16]
      G. Zhou, X.R. Sun, Q.H. Li, X.L. Wang, J.N. Zhang, W.L. Yang, X.Q. Yu, R.J. Xiao, and H. Li, Mn ion dissolution mechanism for lithium-ion battery with LiMn2O4 cathode: In situ ultraviolet–visible spectroscopy and Ab initio molecular dynamics simulations, J. Phys. Chem. Lett., 11(2020), No. 8, p. 3051. doi: 10.1021/acs.jpclett.0c00936
      [17]
      Y.K. Sun, C.S. Yoon, C.K. Kim, S.G. Youn, Y.S. Lee, M. Yoshio, and I.H. Oh, Degradation mechanism of spinel LiAl0.2Mn1.8O4 cathode materials on high temperature cycling, J. Mater. Chem., 11(2001), No. 10, p. 2519. doi: 10.1039/b103709a
      [18]
      K.R. Ragavendran, P. Mandal, and S. Yarlagadda, Correlation between battery material performance and cooperative electron-phonon interaction in LiCoyMn2−yO4, Appl. Phys. Lett., 110(2017), No. 14, art. No. 143901. doi: 10.1063/1.4979542
      [19]
      S. Lee, Y. Cho, H.K. Song, K.T. Lee, and J. Cho, Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries, Angew. Chem. Int. Ed., 51(2012), No. 35, p. 8748. doi: 10.1002/anie.201203581
      [20]
      D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H.L. Peng, R.A. Huggins, and Y. Cui, Spinel LiMn2O4 nanorods as lithium ion battery cathodes, Nano Lett., 8(2008), No. 11, p. 3948. doi: 10.1021/nl8024328
      [21]
      P.A. Lee and J.B. Pendry, Theory of the extended X-ray absorption fine structure, Phys. Rev. B, 11(1975), No. 8, p. 2795. doi: 10.1103/PhysRevB.11.2795
      [22]
      C.R. Natoli, M. Benfatto, C. Brouder, M.F.R. López, and D.L. Foulis, Multichannel multiple-scattering theory with general potentials, Phys. Rev. B, 42(1990), No. 4, p. 1944. doi: 10.1103/PhysRevB.42.1944
      [23]
      A.L. Ankudinov, B. Ravel, J.J. Rehr, and S.D. Conradson, Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure, Phys. Rev. B, 58(1998), No. 12, p. 7565. doi: 10.1103/PhysRevB.58.7565
      [24]
      T.A. Tyson, K.O. Hodgson, C.R. Natoli, and M. Benfatto, General multiple-scattering scheme for the computation and interpretation of X-ray-absorption fine structure in atomic clusters with applications to SF6, GeCl4, and Br2 molecules, Phys. Rev. B, 46(1992), No. 10, p. 5997. doi: 10.1103/PhysRevB.46.5997
      [25]
      D.W. Shin, J.W. Choi, W.K. Choi, Y.S. Cho, and S.J. Yoon, Improved cycleability of LiMn2O4-based thin films by Sn substitution, Appl. Phys. Lett., 93(2008), No. 6, art. No. 064101. doi: 10.1063/1.2937854
      [26]
      F.L. Du, Z.Y. Guo, and G.C. Li, Hydrothermal synthesis of SnO2 hollow microspheres, Mater. Lett., 59(2005), No. 19-20, p. 2563. doi: 10.1016/j.matlet.2005.03.046
      [27]
      T.T. Fang and H.Y. Chung, Reassessment of the electronic-conduction behavior above the Verwey-like transition of Ni2+- and Al3+-doped LiMn2O4, J. Am. Ceram. Soc., 91(2008), No. 1, p. 342.
      [28]
      W.K. Choi, H.J. Jung, and S.K. Koh, Chemical shifts and optical properties of tin oxide films grown by a reactive ion assisted deposition, J. Vac. Sci. Technol. A, 14(1996), No. 2, p. 359. doi: 10.1116/1.579901
      [29]
      R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides, Acta Crystallogr. Sect. A, 32(1976), No. 5, p. 751. doi: 10.1107/S0567739476001551
      [30]
      H.R. Taghiyari, K. Mobini, Y.S. Samadi, Z. Doosti, F. Karimi, M. Asghari, A. Jahangiri, and P. Nouri, Effects of nano-wollastonite on thermal conductivity coefficient of medium-density fiberboard, J. Nanomater. Mol. Nanotechnol., 2(2013), No. 1, art. No. 1000106.
      [31]
      Y.L. Ding, J. Xie, G.S. Cao, T.J. Zhu, H.M. Yu, and X.B. Zhao, Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries, Adv. Funct. Mater., 21(2011), No. 2, p. 348. doi: 10.1002/adfm.201001448
      [32]
      P.W. Li, S.H. Luo, J.C. Wang, X. Wang, Y. Tian, H. Li, Q. Wang, Y.H. Zhang, and X. Liu, Preparation and electrochemical properties of Al–F co-doped spinel LiMn2O4 single-crystal material for lithium-ion battery, Int. J. Energy Res., 45(2021), No. 15, p. 21158. doi: 10.1002/er.7169
      [33]
      C. Zhan, X.P. Qiu, J. Lu, and K. Amine, Tuning the Mn deposition on the anode to improve the cycle performance of the Mn-based lithium ion battery, Adv. Mater. Interfaces, 3(2016), No. 11, art. No. 1500856. doi: 10.1002/admi.201500856

    Catalog


    • /

      返回文章
      返回