留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 3
Mar.  2023

图(11)

数据统计

分享

计量
  • 文章访问数:  741
  • HTML全文浏览量:  288
  • PDF下载量:  44
  • 被引次数: 0
Xing Feng, Pengfei Yin, Limin Zhang, Xiyuan Sun, Jian Wang, Liang Zhao, Changfang Lu, Zhihua Gao, and Yongxin Zhan, Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 559-569. https://doi.org/10.1007/s12613-022-2488-2
Cite this article as:
Xing Feng, Pengfei Yin, Limin Zhang, Xiyuan Sun, Jian Wang, Liang Zhao, Changfang Lu, Zhihua Gao, and Yongxin Zhan, Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 559-569. https://doi.org/10.1007/s12613-022-2488-2
引用本文 PDF XML SpringerLink
研究论文

新型球磨辅助化学沉淀–煅烧法制备电磁吸波性能优异的Co@CuFe2O4复合材料

    * 共同第一作者
  • 通讯作者:

    殷鹏飞    E-mail: yinpengfei@sicau.edu.cn

文章亮点

  • (1) 创新性地利用球磨方式辅助化学沉淀法合成Co@CuFe2O4前驱体。
  • (2) 通过后续的退火煅烧过程构建了Co@CuFe2O4吸波复合材料。
  • (3) 所制备Co@CuFe2O4吸波材料在1.72 mm厚度下具有6.74 GHz的有效吸波带宽。
  • 为解决日益增长的电磁辐射危害,利用球磨辅助化学沉淀-煅烧法制备了较低材料厚度下具有优异阻抗匹配性质的Co@CuFe2O4吸波剂。由于扁平状Co片与大量CuFe2O4粒子充分接触,所制备复合材料具有很好的界面极化能力。除了片状Co能提供优异的涡流损耗以外,偶极极化、电荷跃迁与传导、结构散射等同样有助于复合材料宽频吸波的实现。材料厚度仅为1.8 mm时,最大微波吸收损耗在频率为12.93 GHz处可达到−35.56 dB,且最宽的有效吸波带宽可在材料厚度为1.72 mm时达到6.74 GHz。文中所报道的制备方法可作为性能优异的电磁吸波剂的研制提供一种新型途径。
  • Research Article

    Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption

    + Author Affiliations
    • To deal with the growing electromagnetic hazards, herein a Co@CuFe2O4 absorbing agent with excellent impedance matching at thin thickness was obtained via an innovative route of ball-milling assisted chemical precipitation and annealing. The as-prepared composite possesses excellent interface polarization ability due to sufficient contact between CuFe2O4 NPs and flat Co, and this compressed Co lamella can also provide sufficient eddy current loss. Moreover, the dipole polarization, electron hopping/conduction, and structural scattering also contribute to the broadband microwave absorption of the composite. Thus, the minimum microwave reflection loss achieves −35.56 dB at 12.93 GHz for 1.8 mm thickness, and the broadest efficient absorption bandwidth can reach 6.74 GHz for a thinner thickness of 1.72 mm. The preparation method reported here can be referenced as a new-type route to manufacture electromagnetic absorbers with outstanding performance.
    • loading
    • [1]
      J.W. Wang, Z.R. Jia, X.H. Liu, et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption, Nanomicro Lett., 13(2021), No. 1, art. No. 175.
      [2]
      S. Gao, G.Z. Zhang, Y. Wang, X.P. Han, Y. Huang, and P.B. Liu, MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption, J. Mater. Sci. Technol., 88(2021), p. 56. doi: 10.1016/j.jmst.2021.02.011
      [3]
      M. Qin, D. Lan, J.L. Liu, et al., Synthesis of single-component metal oxides with controllable multi-shelled structure and their morphology-related applications, Chem. Rec., 20(2020), No. 2, p. 102. doi: 10.1002/tcr.201900017
      [4]
      P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, and R.C. Che, Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption, Adv. Funct. Mater., 31(2021), No. 27, art. No. 2102812.
      [5]
      Z.G. Gao, D. Lan, L.M. Zhang, and H.J. Wu, Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption, Adv. Funct. Mater., 31(2021), No. 50, art. No. 2106677.
      [6]
      X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Synthesis of porous carbon embedded with NiCo/CoNiO2 hybrids composites for excellent electromagnetic wave absorption performance, J. Colloid Interface Sci., 575(2020), p. 130. doi: 10.1016/j.jcis.2020.04.099
      [7]
      M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber, Adv. Funct. Mater., 31(2021), No. 30, p. art. No. 2103436. doi: 10.1002/adfm.202103436
      [8]
      X.M. Huang, X.H. Liu, Z.R. Jia, B.B. Wang, X.M. Wu, and G.L. Wu, Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1398. doi: 10.1007/s42114-021-00304-2
      [9]
      C.H. Sun, Z.R. Jia, S. Xu, D.Q. Hu, C.H. Zhang, and G.L. Wu, Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption, J. Mater. Sci. Technol., 113(2022), p. 128. doi: 10.1016/j.jmst.2021.11.006
      [10]
      J.L. Liu, L.M. Zhang, D.Y. Zang, and H.J. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption, Adv. Funct. Mater., 31(2021), No. 45, art. No.2105018.
      [11]
      J. Zhou, M.L. Wang, X.F. Shu, et al., Facile synthesis of La-doped cobalt ferrite@glucose-based carbon composite as effective multiband microwave absorber, J. Am. Ceram. Soc., 104(2021), No. 5, p. 2191. doi: 10.1111/jace.17616
      [12]
      X.R. Gao, Z.R. Jia, B.B. Wang, et al., Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber, Chem. Eng. J., 419(2021), art. No. 130019.
      [13]
      X.C. Di, Y. Wang, Z. Lu, R.R. Cheng, L.Q. Yang, and X.M. Wu, Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption, Carbon, 179(2021), p. 566. doi: 10.1016/j.carbon.2021.04.050
      [14]
      Z.J. Liao, M.L. Ma, Z.Y. Tong, et al., Fabrication of ZnFe2O4/C@PPy composites with efficient electromagnetic wave absorption properties, J. Colloid Interface Sci., 602(2021), p. 602. doi: 10.1016/j.jcis.2021.06.042
      [15]
      X.F. Zhou, Z.R. Jia, X.X. Zhang, et al., Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth, J. Mater. Sci. Technol., 87(2021), p. 120. doi: 10.1016/j.jmst.2021.01.073
      [16]
      T.Q. Hou, Z.R. Jia, B.B. Wang, et al., Metal–organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers, Chem. Eng. J., 422(2021), art. No.130079.
      [17]
      Y. Wang, X.C. Di, Z. Lu, R.R. Cheng, X.M. Wu, and P.H. Gao, Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation, Carbon, 187(2022), p. 404. doi: 10.1016/j.carbon.2021.11.027
      [18]
      F. Zhang, Z.R. Jia, Z. Wang, et al., Tailoring nanoparticles composites derived from metal–organic framework as electromagnetic wave absorber, Mater. Today Phys., 20(2021), art. No. 100475.
      [19]
      X.F. Shu, H.D. Ren, Y. Jiang, et al., Enhanced electromagnetic wave absorption performance of silane coupling agent KH550@Fe3O4 hollow nanospheres/graphene composites, J. Mater. Chem. C, 8(2020), No. 8, p. 2913. doi: 10.1039/C9TC05658K
      [20]
      P.F. Yin, L.M. Zhang, P. Sun, et al., Apium-derived biochar loaded with MnFe2O4@C for excellent low frequency electromagnetic wave absorption, Ceram. Int., 46(2020), No. 9, p. 13641. doi: 10.1016/j.ceramint.2020.02.150
      [21]
      M. Qin, H.S. Liang, X.R. Zhao, and H.J. Wu, Filter paper templated one-dimensional NiO/NiCo2O4 microrod with wideband electromagnetic wave absorption capacity, J. Colloid Interface Sci., 566(2020), p. 347. doi: 10.1016/j.jcis.2020.01.114
      [22]
      L. Wang, M.Q. Huang, X.F. Yu, et al., MOF-derived Ni1–xCox@carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber, Nanomicro Lett., 12(2020), No. 1, p. art. No. 150. doi: https://doi.org/10.1007/s40820-020-00488-0
      [23]
      P.F. Yin, L.M. Zhang, Y.T. Tang, and J.C. Liu, Earthworm-like (Co/CoO)@C composite derived from MOF for solving the problem of low-frequency microwave radiation, J. Alloys Compd., 881(2021), art. No. 160556.
      [24]
      Z.G. Gao, B.H. Xu, M.L. Ma, et al., Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption, Composites Part B, 179(2019), art. No. 107417.
      [25]
      Y. Tao, P.F. Yin, L.M. Zhang, et al., One-pot hydrothermal synthesis of Co3O4/MWCNTs/graphene composites with enhanced microwave absorption in low frequency band, ChemNanoMat, 5(2019), No. 6, p. 847. doi: 10.1002/cnma.201900173
      [26]
      W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies, Proc. IEEE, 62(1974), No. 1, p. 33. doi: 10.1109/PROC.1974.9382
      [27]
      A.M. Nicolson and G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques, IEEE Trans. Instrum. Meas., 19(1970), No. 4, p. 377. doi: 10.1109/TIM.1970.4313932
      [28]
      Y. Liu, Z. Chen, W. Xie, S. Song, Y. Zhang, and L. Dong, In-situ growth and graphitization synthesis of porous Fe3O4/carbon fiber composites derived from biomass as lightweight microwave absorber, ACS Sustainable Chem. Eng., 7(2019), p. 5318. doi: 10.1021/acssuschemeng.8b06339
      [29]
      Z.J. Liao, M.L. Ma, Z.Y. Tong, et al., Fabrication of one-dimensional ZnFe2O4@carbon@MoS2/FeS2 composites as electromagnetic wave absorber, J. Colloid Interface Sci., 600(2021), p. 90. doi: 10.1016/j.jcis.2021.04.142
      [30]
      T.T. Zheng, Z.R. Jia, Q.Q. Zhan, et al., Self-assembled multi-layered hexagonal-like MWCNTs/MnF2/CoO nanocomposite with enhanced electromagnetic wave absorption, Carbon, 186(2022), p. 262. doi: 10.1016/j.carbon.2021.10.025
      [31]
      Y.X. Bi, M.L. Ma, Y.Y. Liu, et al., Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPy composites derived from metal-organic framework, J. Colloid Interface Sci., 600(2021), p. 209. doi: 10.1016/j.jcis.2021.04.137
      [32]
      T.Q. Hou, Z.R. Jia, A.L. Feng, et al., Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity, J. Mater. Sci. Technol., 68(2021), p. 61. doi: 10.1016/j.jmst.2020.06.046
      [33]
      H.Y. Wei, Z.P. Zhang, G. Hussain, L.S. Zhou, Q. Li, and K. (Ken) Ostrikov, Techniques to enhance magnetic permeability in microwave absorbing materials, Appl. Mater. Today, 19(2020), art. No. 100596.
      [34]
      X.L. Cao, Z.R. Jia, D.Q. Hu, and G.L. Wu, Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption, Adv. Compos. Hybrid Mater., 5(2022), p. 1030. doi: 10.1007/s42114-021-00415-w
      [35]
      J.L. Liu, L.M. Zhang, and H.J. Wu, Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: Review and perspective, J. Phys. D, 54(2021), No. 20, p. art. No. 203001. doi: 10.1088/1361-6463/abe26d
      [36]
      L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2–0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993.
      [37]
      D. Lan, M. Qin, R.S. Yang, et al., Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance, J. Colloid Interface Sci., 533(2019), p. 481. doi: 10.1016/j.jcis.2018.08.108
      [38]
      B.Z. Dai, B. Zhao, X. Xie, et al., Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption, J. Mater. Chem. C, 6(2018), No. 21, p. 5690. doi: 10.1039/C8TC01404C
      [39]
      J.L. Liu, L.M. Zhang, H.J. Wu, and D.Y. Zang, Boosted electromagnetic wave absorption performance from vacancies, defects and interfaces engineering in Co(OH)F/Zn0.76Co0.24S/Co3S4 composite, Chem. Eng. J., 411(2021), art. No. 128601.
      [40]
      D. Lan, Z.H. Zhao, Z.G. Gao, K.C. Kou, and H.J. Wu, Novel magnetic silicate composite for lightweight and efficient electromagnetic wave absorption, J. Mater. Sci. Technol., 92(2021), p. 51. doi: 10.1016/j.jmst.2021.03.029
      [41]
      M.L. Ma, Z.J. Liao, X.W. Su, et al., Magnetic CoNi alloy particles embedded N-doped carbon fibers with polypyrrole for excellent electromagnetic wave absorption, J. Colloid Interface Sci., 608(2022), p. 2203. doi: 10.1016/j.jcis.2021.10.006
      [42]
      R.R. Cheng, Y. Wang, X.C. Di, et al., Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption, J. Colloid Interface Sci., 609(2022), p. 224. doi: 10.1016/j.jcis.2021.11.197
      [43]
      Y. Liu, X.H. Liu, X. E, et al., Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption, J. Mater. Sci. Technol., 103(2022), p. 157. doi: 10.1016/j.jmst.2021.06.034
      [44]
      M. Tang, J.Y. Zhang, S. Bi, et al., Ultrathin topological insulator absorber: Unique dielectric behavior of Bi2Te3 nanosheets based on conducting surface states, ACS Appl. Mater. Interfaces, 11(2019), No. 36, p. 33285. doi: 10.1021/acsami.9b13775
      [45]
      J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253.
      [46]
      B.B. Fan, S.Y. Shang, B.Z. Dai, et al., 2D-layered Ti3C2/TiO2 hybrids derived from Ti3C2 MXenes for enhanced electromagnetic wave absorption, Ceram. Int., 46(2020), No. 10, p. 17085. doi: 10.1016/j.ceramint.2020.04.004
      [47]
      T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919.
      [48]
      X.F. Liu, X.R. Cui, Y.X. Chen, et al., Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidene fluoride) composites, Carbon, 95(2015), p. 870. doi: 10.1016/j.carbon.2015.09.036
      [49]
      Y. Liu, Z.R. Jia, Q.Q. Zhan, Y.H. Dong, Q.M. Xu, and G.L. Wu, Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption, Nano Res., 15(2022), No. 6, p. 5590. doi: 10.1007/s12274-022-4287-5
      [50]
      M. Qin, L.M. Zhang, and H.J. Wu, Dual-template hydrothermal synthesis of multi-channel porous NiCo2O4 hollow spheres as high-performance electromagnetic wave absorber, Appl. Surf. Sci., 515(2020), art. No. 146132.
      [51]
      M.S. Cao, C. Han, X.X. Wang, et al., Graphene nanohybrids: Excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves, J. Mater. Chem. C, 6(2018), No. 17, p. 4586. doi: 10.1039/C7TC05869A
      [52]
      P.F. Yin, L.M. Zhang, J. Wang, et al., Tailoring microstructures in (Ni/NiO)@C composites via facile route for broadband microwave absorption, Ceram. Int., 48(2022), No. 9, p. 12979. doi: 10.1016/j.ceramint.2022.01.171
      [53]
      Y.M. lei, Z.J. Yao, H.Y. Lin, J.T. Zhou, A.A. Haidry, and P.J. liu, The effect of polymerization temperature and reaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites, RSC Adv., 8(2018), No. 51, p. 29344. doi: 10.1039/C8RA05500A
      [54]
      J.Y. Fang, T. Liu, Z. Chen, et al., A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber, Nanoscale, 8(2016), No. 16, p. 8899. doi: 10.1039/C6NR01863G
      [55]
      X.Y. Zhang, Z.R. Jia, F. Zhang, et al., MOF-derived NiFe2S4/porous carbon composites as electromagnetic wave absorber, J. Colloid Interface Sci., 610(2022), p. 610. doi: 10.1016/j.jcis.2021.11.110
      [56]
      C.X. Wang, Z.R. Jia, S.Q. He, et al., Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation, J. Mater. Sci. Technol., 108(2022), p. 236. doi: 10.1016/j.jmst.2021.07.049
      [57]
      L.P. Wu, F. Wu, Q.Y. Sun, et al., A TTF-TCNQ complex: An organic charge-transfer system with extraordinary electromagnetic response behavior, J. Mater. Chem. C, 9(2021), No. 9, p. 3316. doi: 10.1039/D0TC05230B
      [58]
      L.P. Wu, K.M. Zhang, J.Y. Shi, et al., Metal/nitrogen co-doped hollow carbon nanorods derived from self-assembly organic nanostructure for wide bandwidth electromagnetic wave absorption, Composites Part B, 228(2022), art No. 109424.
      [59]
      H.Q. Zhao, Y. Cheng, J.N. Ma, Y.N. Zhang, G.B. Ji, and Y.W. Du, A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber, Chem. Eng. J., 339(2018), p. 432. doi: 10.1016/j.cej.2018.01.151
      [60]
      R. Shu, W. Li, X. Zhou, et al., Facile preparation and microwave absorption properties of RGO/MWCNTs/ZnFe2O4 hybrid nanocomposites, J. Alloys Compd., 743(2018), p. 163. doi: 10.1016/j.jallcom.2018.02.016

    Catalog


    • /

      返回文章
      返回