Cite this article as: |
Xing Feng, Pengfei Yin, Limin Zhang, Xiyuan Sun, Jian Wang, Liang Zhao, Changfang Lu, Zhihua Gao, and Yongxin Zhan, Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 559-569. https://doi.org/10.1007/s12613-022-2488-2 |
殷鹏飞 E-mail: yinpengfei@sicau.edu.cn
[1] |
J.W. Wang, Z.R. Jia, X.H. Liu, et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption, Nanomicro Lett., 13(2021), No. 1, art. No. 175.
|
[2] |
S. Gao, G.Z. Zhang, Y. Wang, X.P. Han, Y. Huang, and P.B. Liu, MOFs derived magnetic porous carbon microspheres constructed by core-shell Ni@C with high-performance microwave absorption, J. Mater. Sci. Technol., 88(2021), p. 56. doi: 10.1016/j.jmst.2021.02.011
|
[3] |
M. Qin, D. Lan, J.L. Liu, et al., Synthesis of single-component metal oxides with controllable multi-shelled structure and their morphology-related applications, Chem. Rec., 20(2020), No. 2, p. 102. doi: 10.1002/tcr.201900017
|
[4] |
P.B. Liu, S. Gao, G.Z. Zhang, Y. Huang, W.B. You, and R.C. Che, Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption, Adv. Funct. Mater., 31(2021), No. 27, art. No. 2102812.
|
[5] |
Z.G. Gao, D. Lan, L.M. Zhang, and H.J. Wu, Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption, Adv. Funct. Mater., 31(2021), No. 50, art. No. 2106677.
|
[6] |
X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Synthesis of porous carbon embedded with NiCo/CoNiO2 hybrids composites for excellent electromagnetic wave absorption performance, J. Colloid Interface Sci., 575(2020), p. 130. doi: 10.1016/j.jcis.2020.04.099
|
[7] |
M. Qin, L.M. Zhang, X.R. Zhao, and H.J. Wu, Lightweight Ni foam-based ultra-broadband electromagnetic wave absorber, Adv. Funct. Mater., 31(2021), No. 30, p. art. No. 2103436. doi: 10.1002/adfm.202103436
|
[8] |
X.M. Huang, X.H. Liu, Z.R. Jia, B.B. Wang, X.M. Wu, and G.L. Wu, Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1398. doi: 10.1007/s42114-021-00304-2
|
[9] |
C.H. Sun, Z.R. Jia, S. Xu, D.Q. Hu, C.H. Zhang, and G.L. Wu, Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption, J. Mater. Sci. Technol., 113(2022), p. 128. doi: 10.1016/j.jmst.2021.11.006
|
[10] |
J.L. Liu, L.M. Zhang, D.Y. Zang, and H.J. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption, Adv. Funct. Mater., 31(2021), No. 45, art. No.2105018.
|
[11] |
J. Zhou, M.L. Wang, X.F. Shu, et al., Facile synthesis of La-doped cobalt ferrite@glucose-based carbon composite as effective multiband microwave absorber, J. Am. Ceram. Soc., 104(2021), No. 5, p. 2191. doi: 10.1111/jace.17616
|
[12] |
X.R. Gao, Z.R. Jia, B.B. Wang, et al., Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber, Chem. Eng. J., 419(2021), art. No. 130019.
|
[13] |
X.C. Di, Y. Wang, Z. Lu, R.R. Cheng, L.Q. Yang, and X.M. Wu, Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption, Carbon, 179(2021), p. 566. doi: 10.1016/j.carbon.2021.04.050
|
[14] |
Z.J. Liao, M.L. Ma, Z.Y. Tong, et al., Fabrication of ZnFe2O4/C@PPy composites with efficient electromagnetic wave absorption properties, J. Colloid Interface Sci., 602(2021), p. 602. doi: 10.1016/j.jcis.2021.06.042
|
[15] |
X.F. Zhou, Z.R. Jia, X.X. Zhang, et al., Controllable synthesis of Ni/NiO@porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth, J. Mater. Sci. Technol., 87(2021), p. 120. doi: 10.1016/j.jmst.2021.01.073
|
[16] |
T.Q. Hou, Z.R. Jia, B.B. Wang, et al., Metal–organic framework-derived NiSe2-CoSe2@C/Ti3C2Tx composites as electromagnetic wave absorbers, Chem. Eng. J., 422(2021), art. No.130079.
|
[17] |
Y. Wang, X.C. Di, Z. Lu, R.R. Cheng, X.M. Wu, and P.H. Gao, Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation, Carbon, 187(2022), p. 404. doi: 10.1016/j.carbon.2021.11.027
|
[18] |
F. Zhang, Z.R. Jia, Z. Wang, et al., Tailoring nanoparticles composites derived from metal–organic framework as electromagnetic wave absorber, Mater. Today Phys., 20(2021), art. No. 100475.
|
[19] |
X.F. Shu, H.D. Ren, Y. Jiang, et al., Enhanced electromagnetic wave absorption performance of silane coupling agent KH550@Fe3O4 hollow nanospheres/graphene composites, J. Mater. Chem. C, 8(2020), No. 8, p. 2913. doi: 10.1039/C9TC05658K
|
[20] |
P.F. Yin, L.M. Zhang, P. Sun, et al., Apium-derived biochar loaded with MnFe2O4@C for excellent low frequency electromagnetic wave absorption, Ceram. Int., 46(2020), No. 9, p. 13641. doi: 10.1016/j.ceramint.2020.02.150
|
[21] |
M. Qin, H.S. Liang, X.R. Zhao, and H.J. Wu, Filter paper templated one-dimensional NiO/NiCo2O4 microrod with wideband electromagnetic wave absorption capacity, J. Colloid Interface Sci., 566(2020), p. 347. doi: 10.1016/j.jcis.2020.01.114
|
[22] |
L. Wang, M.Q. Huang, X.F. Yu, et al., MOF-derived Ni1–xCox@carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber, Nanomicro Lett., 12(2020), No. 1, p. art. No. 150. doi: https://doi.org/10.1007/s40820-020-00488-0
|
[23] |
P.F. Yin, L.M. Zhang, Y.T. Tang, and J.C. Liu, Earthworm-like (Co/CoO)@C composite derived from MOF for solving the problem of low-frequency microwave radiation, J. Alloys Compd., 881(2021), art. No. 160556.
|
[24] |
Z.G. Gao, B.H. Xu, M.L. Ma, et al., Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption, Composites Part B, 179(2019), art. No. 107417.
|
[25] |
Y. Tao, P.F. Yin, L.M. Zhang, et al., One-pot hydrothermal synthesis of Co3O4/MWCNTs/graphene composites with enhanced microwave absorption in low frequency band, ChemNanoMat, 5(2019), No. 6, p. 847. doi: 10.1002/cnma.201900173
|
[26] |
W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies, Proc. IEEE, 62(1974), No. 1, p. 33. doi: 10.1109/PROC.1974.9382
|
[27] |
A.M. Nicolson and G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques, IEEE Trans. Instrum. Meas., 19(1970), No. 4, p. 377. doi: 10.1109/TIM.1970.4313932
|
[28] |
Y. Liu, Z. Chen, W. Xie, S. Song, Y. Zhang, and L. Dong, In-situ growth and graphitization synthesis of porous Fe3O4/carbon fiber composites derived from biomass as lightweight microwave absorber, ACS Sustainable Chem. Eng., 7(2019), p. 5318. doi: 10.1021/acssuschemeng.8b06339
|
[29] |
Z.J. Liao, M.L. Ma, Z.Y. Tong, et al., Fabrication of one-dimensional ZnFe2O4@carbon@MoS2/FeS2 composites as electromagnetic wave absorber, J. Colloid Interface Sci., 600(2021), p. 90. doi: 10.1016/j.jcis.2021.04.142
|
[30] |
T.T. Zheng, Z.R. Jia, Q.Q. Zhan, et al., Self-assembled multi-layered hexagonal-like MWCNTs/MnF2/CoO nanocomposite with enhanced electromagnetic wave absorption, Carbon, 186(2022), p. 262. doi: 10.1016/j.carbon.2021.10.025
|
[31] |
Y.X. Bi, M.L. Ma, Y.Y. Liu, et al., Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPy composites derived from metal-organic framework, J. Colloid Interface Sci., 600(2021), p. 209. doi: 10.1016/j.jcis.2021.04.137
|
[32] |
T.Q. Hou, Z.R. Jia, A.L. Feng, et al., Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity, J. Mater. Sci. Technol., 68(2021), p. 61. doi: 10.1016/j.jmst.2020.06.046
|
[33] |
H.Y. Wei, Z.P. Zhang, G. Hussain, L.S. Zhou, Q. Li, and K. (Ken) Ostrikov, Techniques to enhance magnetic permeability in microwave absorbing materials, Appl. Mater. Today, 19(2020), art. No. 100596.
|
[34] |
X.L. Cao, Z.R. Jia, D.Q. Hu, and G.L. Wu, Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption, Adv. Compos. Hybrid Mater., 5(2022), p. 1030. doi: 10.1007/s42114-021-00415-w
|
[35] |
J.L. Liu, L.M. Zhang, and H.J. Wu, Electromagnetic wave-absorbing performance of carbons, carbides, oxides, ferrites and sulfides: Review and perspective, J. Phys. D, 54(2021), No. 20, p. art. No. 203001. doi: 10.1088/1361-6463/abe26d
|
[36] |
L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2–0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993.
|
[37] |
D. Lan, M. Qin, R.S. Yang, et al., Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance, J. Colloid Interface Sci., 533(2019), p. 481. doi: 10.1016/j.jcis.2018.08.108
|
[38] |
B.Z. Dai, B. Zhao, X. Xie, et al., Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption, J. Mater. Chem. C, 6(2018), No. 21, p. 5690. doi: 10.1039/C8TC01404C
|
[39] |
J.L. Liu, L.M. Zhang, H.J. Wu, and D.Y. Zang, Boosted electromagnetic wave absorption performance from vacancies, defects and interfaces engineering in Co(OH)F/Zn0.76Co0.24S/Co3S4 composite, Chem. Eng. J., 411(2021), art. No. 128601.
|
[40] |
D. Lan, Z.H. Zhao, Z.G. Gao, K.C. Kou, and H.J. Wu, Novel magnetic silicate composite for lightweight and efficient electromagnetic wave absorption, J. Mater. Sci. Technol., 92(2021), p. 51. doi: 10.1016/j.jmst.2021.03.029
|
[41] |
M.L. Ma, Z.J. Liao, X.W. Su, et al., Magnetic CoNi alloy particles embedded N-doped carbon fibers with polypyrrole for excellent electromagnetic wave absorption, J. Colloid Interface Sci., 608(2022), p. 2203. doi: 10.1016/j.jcis.2021.10.006
|
[42] |
R.R. Cheng, Y. Wang, X.C. Di, et al., Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption, J. Colloid Interface Sci., 609(2022), p. 224. doi: 10.1016/j.jcis.2021.11.197
|
[43] |
Y. Liu, X.H. Liu, X. E, et al., Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption, J. Mater. Sci. Technol., 103(2022), p. 157. doi: 10.1016/j.jmst.2021.06.034
|
[44] |
M. Tang, J.Y. Zhang, S. Bi, et al., Ultrathin topological insulator absorber: Unique dielectric behavior of Bi2Te3 nanosheets based on conducting surface states, ACS Appl. Mater. Interfaces, 11(2019), No. 36, p. 33285. doi: 10.1021/acsami.9b13775
|
[45] |
J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253.
|
[46] |
B.B. Fan, S.Y. Shang, B.Z. Dai, et al., 2D-layered Ti3C2/TiO2 hybrids derived from Ti3C2 MXenes for enhanced electromagnetic wave absorption, Ceram. Int., 46(2020), No. 10, p. 17085. doi: 10.1016/j.ceramint.2020.04.004
|
[47] |
T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919.
|
[48] |
X.F. Liu, X.R. Cui, Y.X. Chen, et al., Modulation of electromagnetic wave absorption by carbon shell thickness in carbon encapsulated magnetite nanospindles-poly(vinylidene fluoride) composites, Carbon, 95(2015), p. 870. doi: 10.1016/j.carbon.2015.09.036
|
[49] |
Y. Liu, Z.R. Jia, Q.Q. Zhan, Y.H. Dong, Q.M. Xu, and G.L. Wu, Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption, Nano Res., 15(2022), No. 6, p. 5590. doi: 10.1007/s12274-022-4287-5
|
[50] |
M. Qin, L.M. Zhang, and H.J. Wu, Dual-template hydrothermal synthesis of multi-channel porous NiCo2O4 hollow spheres as high-performance electromagnetic wave absorber, Appl. Surf. Sci., 515(2020), art. No. 146132.
|
[51] |
M.S. Cao, C. Han, X.X. Wang, et al., Graphene nanohybrids: Excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves, J. Mater. Chem. C, 6(2018), No. 17, p. 4586. doi: 10.1039/C7TC05869A
|
[52] |
P.F. Yin, L.M. Zhang, J. Wang, et al., Tailoring microstructures in (Ni/NiO)@C composites via facile route for broadband microwave absorption, Ceram. Int., 48(2022), No. 9, p. 12979. doi: 10.1016/j.ceramint.2022.01.171
|
[53] |
Y.M. lei, Z.J. Yao, H.Y. Lin, J.T. Zhou, A.A. Haidry, and P.J. liu, The effect of polymerization temperature and reaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites, RSC Adv., 8(2018), No. 51, p. 29344. doi: 10.1039/C8RA05500A
|
[54] |
J.Y. Fang, T. Liu, Z. Chen, et al., A wormhole-like porous carbon/magnetic particles composite as an efficient broadband electromagnetic wave absorber, Nanoscale, 8(2016), No. 16, p. 8899. doi: 10.1039/C6NR01863G
|
[55] |
X.Y. Zhang, Z.R. Jia, F. Zhang, et al., MOF-derived NiFe2S4/porous carbon composites as electromagnetic wave absorber, J. Colloid Interface Sci., 610(2022), p. 610. doi: 10.1016/j.jcis.2021.11.110
|
[56] |
C.X. Wang, Z.R. Jia, S.Q. He, et al., Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation, J. Mater. Sci. Technol., 108(2022), p. 236. doi: 10.1016/j.jmst.2021.07.049
|
[57] |
L.P. Wu, F. Wu, Q.Y. Sun, et al., A TTF-TCNQ complex: An organic charge-transfer system with extraordinary electromagnetic response behavior, J. Mater. Chem. C, 9(2021), No. 9, p. 3316. doi: 10.1039/D0TC05230B
|
[58] |
L.P. Wu, K.M. Zhang, J.Y. Shi, et al., Metal/nitrogen co-doped hollow carbon nanorods derived from self-assembly organic nanostructure for wide bandwidth electromagnetic wave absorption, Composites Part B, 228(2022), art No. 109424.
|
[59] |
H.Q. Zhao, Y. Cheng, J.N. Ma, Y.N. Zhang, G.B. Ji, and Y.W. Du, A sustainable route from biomass cotton to construct lightweight and high-performance microwave absorber, Chem. Eng. J., 339(2018), p. 432. doi: 10.1016/j.cej.2018.01.151
|
[60] |
R. Shu, W. Li, X. Zhou, et al., Facile preparation and microwave absorption properties of RGO/MWCNTs/ZnFe2O4 hybrid nanocomposites, J. Alloys Compd., 743(2018), p. 163. doi: 10.1016/j.jallcom.2018.02.016
|