留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 6
Jun.  2023

图(7)  / 表(9)

数据统计

分享

计量
  • 文章访问数:  1135
  • HTML全文浏览量:  354
  • PDF下载量:  54
  • 被引次数: 0
Shuai Zhang, Yanling Zhang, and Shaowen Wu, Effects of ZnO, FeO and Fe2O3 on the spinel formation, microstructure and physicochemical properties of augite-based glass ceramics, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1207-1216. https://doi.org/10.1007/s12613-022-2489-1
Cite this article as:
Shuai Zhang, Yanling Zhang, and Shaowen Wu, Effects of ZnO, FeO and Fe2O3 on the spinel formation, microstructure and physicochemical properties of augite-based glass ceramics, Int. J. Miner. Metall. Mater., 30(2023), No. 6, pp. 1207-1216. https://doi.org/10.1007/s12613-022-2489-1
引用本文 PDF XML SpringerLink
研究论文

ZnO、FeO 和 Fe2O3对普通辉石基微晶玻璃中尖晶石的形成、材料微观结构和物化性能的影响

  • 通讯作者:

    张延玲    E-mail: zhangyanling@metall.ustb.edu.cn

文章亮点

  • (1) 系统地研究了ZnO、 FeO 和 Fe2O3对普通辉石基微晶玻璃中尖晶石赋存形态的影响。
  • (2) 阐明了ZnO、 FeO 和 Fe2O3所形成尖晶石对材料微观结构的影响机理。
  • (3) 总结了ZnO、 FeO 和 Fe2O3对材料理化性能及重金属固化能力的作用规律。
  • 在辉石为主晶相的微晶玻璃中,常加入一定量的形核剂Cr2O3形成尖晶石相,进而形成了以尖晶石为核心,辉石相围绕长大的微观结构,该结构赋予了材料优良理化性能。针对该微观结构,需要对尖晶石相在玻璃基体中的生成及分布进一步研究。基于此,本研究在制备普通辉石基微晶玻璃时添加三种尖晶石形成氧化物ZnO、 FeO 和 Fe2O3,并探究材料中尖晶石的形成现象及微观结构的演变,并依此揭示材料理化性能及重金属固化能力的变化规律。研究发现氧化物的加入促进了初始尖晶石的大量生成,进而促进试样的整体结晶。微观结构方面,加入Fe2O3的试样中尖晶石尺寸较大,且产生聚集现象。而加入ZnO和FeO的试样中,尖晶石尺寸相对较小且分布均匀,试样2ZnO具有最致密的微观结构。在材料理化性能方面,ZnO和Fe2O3的加入提高了材料的抗折强度,其中2ZnO试样的抗折强度达到170.31 MPa。所有样品的铬浸出量(0.3–0.8 mg/L)均低于国家标准(1.5 mg/L),具有一定的安全性。然而,FeO的加入导致了材料抗化学腐蚀性的降低,进而造成了更多铬元素的浸出。基于上述研究,在利用工业固废制备微晶玻璃时,可以考虑加入适量的含锌粉尘和污泥,提升材料力学、理化性能的同时,保证材料的使用安全性。
  • Research Article

    Effects of ZnO, FeO and Fe2O3 on the spinel formation, microstructure and physicochemical properties of augite-based glass ceramics

    + Author Affiliations
    • Augite-based glass ceramics were synthesised using ZnO, FeO, and Fe2O3 as additives, and the spinel formation, matrix structure, crystallisation thermodynamics, and physicochemical properties were investigated. The results showed that oxides resulted in numerous preliminary spinels in the glass matrix. FeO, ZnO, and Fe2O3 influenced the formation of spinel, while FeO simplified the glass network. FeO and ZnO promoted bulk crystallisation of the parent glass. After adding oxides, the grains of augite phase were refined, and the relative quantities of augite crystal planes were also influenced. All samples displayed good mechanical properties and chemical stability. The 2wt% ZnO-doping sample displayed the maximum flexural strength (170.3 MPa). Chromium leaching amount values of all the samples were less than the national standard (1.5 mg/L), confirming the safety of the materials. In conclusion, an appropriate amount of zinc-containing raw material is beneficial for the preparation of augite-based glass ceramics.
    • loading
    • [1]
      A.V. DeCeanne, L.R. Rodrigues, C.J. Wilkinson, J.C. Wilkinson, and E.D. Wilkinson, Examining the role of nucleating agents within glass-ceramic systems, J. Non-Cryst. Solids., 591(2022), p. 121714. doi: 10.1016/j.jnoncrysol.2022.121714
      [2]
      D. He, H. Ma, and H. Zhong, Effect of different nucleating agent ratios on the crystallization and properties of MAS glass ceramics, J. Eur. Ceram. Soc., 41(2021), No. 16, p. 342. doi: 10.1016/j.jeurceramsoc.2021.09.034
      [3]
      J. Zhong, J. Zhang, Y. Yu, H. Bai, Z. Zhang, and Y. Huang, Transparent MgO−Al2O3−SiO2 glass-ceramics prepared with ZrO2 and SnO2 as nucleating agents, J. Non-Cryst. Solids., 588(2022), p. 121585. doi: 10.1016/j.jnoncrysol.2022.121585
      [4]
      Z. Luo, H. Liang, C. Qin, T. Liu, and A. Liu, Crystallization kinetics and phase formation of Li2O−SiO2−Si3N4 glass-ceramics with P2O5 nucleating agent, J. Alloys Compd., 786(2022), p. 688.
      [5]
      C. Wang, H. Jia, A. Wang, X. Wang, Y. Guo, and J. Zhang, Effect of TiO2 on the crystallization and properties of MgO−Al2O3−SiO2 glass-ceramics prepared by an “one-step" method from laterite ore, Ceram. Int., 45(2019), No. 4, p. 5133. doi: 10.1016/j.ceramint.2018.10.051
      [6]
      L. Deng, R. Jia, F. Yun, X. Zhang, H. Li, M. Zhang, X. Jia, D. Ren, and B. Li, Influence of Cr2O3 on the viscosity and crystallization behavior of glass ceramics based on blast furnace slag, Mater. Chem. Phys., 240(2020), p. 122212. doi: 10.1016/j.matchemphys.2019.122212
      [7]
      Y. Shi, X.W. Song, and X.X. Han, Catalytic mechanism of iron oxide doping on the crystallization process of Cr2O3-containg glass ceramics, J. Non Cryst. Solids., 570(2021), p. 121002. doi: 10.1016/j.jnoncrysol.2021.121002
      [8]
      G.S. Back, M.J. Yoon, and W.G. Jung, Effect of the Cr2O3 and TiO2 as nucleating agents in SiO2−Al2O3−CaO−MgO glass-ceramic system, Met. Mater. Int., 23(2017), p. 798. doi: 10.1007/s12540-017-6714-9
      [9]
      G.A. Khater, Influence of Cr2O3, LiF, CaF2 and TiO2 nucleants on the crystallization behavior and microstructure of glass-ceramics based on blast-furnace slag, Ceram. Int., 37(2011), No. 7, p. 2193. doi: 10.1016/j.ceramint.2011.03.011
      [10]
      S. Zhang, Y.L. Zhang, and Z.M. Qu, Effect of soluble Cr2O3 on the silicate network, crystallization kinetics, mineral phase, microstructure of CaO–MgO–SiO2–(Na2O) glass ceramics with different CaO/MgO ratio, Ceram. Int., 45(2019), No. 9, p. 11216. doi: 10.1016/j.ceramint.2019.02.106
      [11]
      Y. Shi, B.W. Li, M. Zhao, and M.X. Zhang, Growth of diopside crystals in CMAS glass-ceramics using Cr2O3 as a nucleating agent, J. Am. Ceram. Soc., 101(2018), No. 9, p. 3968. doi: 10.1111/jace.15700
      [12]
      S. Zhang, Y.L. Zhang, J.T. Gao, Z.M. Qu, and Z. Zhang, Effects of Cr2O3 and CaF2 on the structure, crystal growth behavior, and properties of augite-based glass ceramics, J. Eur. Ceram. Soc., 39(2019), No. 14, p. 4283. doi: 10.1016/j.jeurceramsoc.2019.05.060
      [13]
      M.C. Kemei, P.T. Barton, S.L. Moffitt, et al., Crystal structures of spin-Jahn–Teller-ordered MgCr2O4 and ZnCr2O4, J. Phys.: Condens. Matter, 25(2013), No. 32, art. No. 326001.
      [14]
      M. Robbins, G.K. Wertheim, R.C. Sherwood, and D.N.E. Buchanan, Magnetic properties and site distributions in the system FeCr2O4–Fe3O4(Fe2+Cr2−xFe $ {}_x^{3+} $O4), J. Phys. Chem. Solids, 32(1971), No. 3, p. 717. doi: 10.1016/S0022-3697(71)80412-2
      [15]
      M.Z. Zhao, J.W. Cao, Z. Wang, and G.H. Li, Precipitating spinel into precursor glass and its assistance in crystallization, J. Eur. Ceram. Soc., 39(2019), No. 7, p. 2427. doi: 10.1016/j.jeurceramsoc.2019.02.012
      [16]
      J.L. Li, A.J. Xu, D.F. He, Q.X. Yang, and N.Y. Tian, Effect of FeO on the formation of spinel phases and chromium distribution in the CaO–SiO2–MgO–Al2O3–Cr2O3 system, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 253. doi: 10.1007/s12613-013-0720-9
      [17]
      T. Wu, Y. Zhang, F. Yuan, and Z. An, Effects of the Cr2O3 content on the viscosity of CaO−SiO2−10 Pct Al2O3−Cr2O3 quaternary slag, Metall. Mater. Trans. B., 49(2018), p. 1719. doi: 10.1007/s11663-018-1258-z
      [18]
      Q. Li, J. Gao, Y. Zhang, Z. An, and Z. Guo, Viscosity measurement and structure analysis of Cr2O3-bearing CaO–SiO2–MgO–Al2O3 slags, Metall. Mater. Trans. B., 48(2017), p. 346. doi: 10.1007/s11663-016-0858-8
      [19]
      Q. Li, S. Yang, Y. Zhang, Z. An, and Z. Guo, Effects of MgO, Na2O, and B2O3 on the viscosity and structure of Cr2O3-bearing CaO−SiO2−Al2O3 slags, ISIJ. Int., 57(2017), No. 4, p. 689. doi: 10.2355/isijinternational.ISIJINT-2016-569
      [20]
      S. Zhang, Y. Zhang, S. Wu, Z. Zhao, and Y. Wu, Long-term leaching mechanism of chromium-containing slag after vitrification and heat treatment, Ceram. Int., 48(2022), No. 9, p. 13366. doi: 10.1016/j.ceramint.2022.01.218
      [21]
      F. Yuan, Z. Yuan, Y. Zhang, and T. Wu, Effect of Al2O3 content on the viscosity and structure of CaO−SiO2−Cr2O3−Al2O3 slags, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1522. doi: 10.1007/s12613-021-2306-2
      [22]
      Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1283. doi: 10.2355/isijinternational.44.1283
      [23]
      Z.W. Wang, P. Lazor, S.K. Saxena, and G. Artioli, High-pressure Raman spectroscopic study of spinel (ZnCr2O4), J. Solid State Chem., 165(2002), No. 1, p. 165. doi: 10.1006/jssc.2002.9527
      [24]
      W.J. Yong, S. Botis, S.R. Shieh, W.G. Shi, and A.C. Withers, Pressure-induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction, Phys. Earth Planet. Inter., 196-197(2012), p. 75. doi: 10.1016/j.pepi.2012.02.011
      [25]
      K.F. McCarty and D.R. Boehme, A Raman study of the systems Fe3−xCrxO4 and Fe2−xCrxO3, J. Solid State Chem., 79(1989), No. 1, p. 19. doi: 10.1016/0022-4596(89)90245-4
      [26]
      W. Li, C. Deng, Y. Chen, X. Wang, C. Yu, J. Ding, and H. Zhu, Application of Cr3C2/C composite powders synthesized via molten-salt method in low-carbon MgO−C refractories, Ceram. Int., 48(2022), No. 11, p. 15227. doi: 10.1016/j.ceramint.2022.02.053
      [27]
      J. Yang, B. Liu, S.G. Zhang, and A.A. Volinsky, Glass-ceramics one-step crystallization accomplished by building Ca2+ and Mg2+ fast diffusion layer around diopside crystal, J. Alloys Compd., 688(2016), p. 709. doi: 10.1016/j.jallcom.2016.07.027
      [28]
      N. Saheb, S. Lamara, F. Lamara, and S.F. Hassan, Kinetics of α-cordierite formation from nano-oxide powders, Ceram. Int., 48(2022), No. 16, p. 23921. doi: 10.1016/j.ceramint.2022.05.065
      [29]
      Y. Li, D. Cao, Y. Zhang, and X. Jia, Performance of a dry-method-epoxy modifier and a modified epoxy-asphalt mixture, Constr. Build. Mater., 266(2021), p. 120229. doi: 10.1016/j.conbuildmat.2020.120229
      [30]
      J.A. Augis and J.E. Bennett, Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method, J. Therm. Anal., 13(1978), No. 2, p. 283. doi: 10.1007/BF01912301
      [31]
      A. Karamanov and M. Pelino, Crystallization phenomena in iron-rich glasses, J. Non Cryst. Solids, 281(2001), No. 1-3, p. 139. doi: 10.1016/S0022-3093(00)00436-1
      [32]
      M.R. Boudchicha, F. Rubio, and S. Achour, Synthesis of glass ceramics from Kaolin and dolomite mixture, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 194. doi: 10.1007/s12613-017-1395-4
      [33]
      H.P. Liu, X.F. Huang, L.P. Ma, D.L. Chen, Z.B. Shang, and M. Jiang, Effect of Fe2O3 on the crystallization behavior of glass-ceramics produced from naturally cooled yellow phosphorus furnace slag, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 316. doi: 10.1007/s12613-017-1410-9

    Catalog


    • /

      返回文章
      返回