留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 5
Apr.  2022
数据统计

分享

计量
  • 文章访问数:  769
  • HTML全文浏览量:  728
  • PDF下载量:  65
  • 被引次数: 0
Xindong Wang, Ranbo Yu, Chun Zhan, Wei Wang, and Xuan Liu, Editorial for special issue on advanced energy storage and materials for the 70th Anniversary of USTB, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 905-908. https://doi.org/10.1007/s12613-022-2490-8
Cite this article as:
Xindong Wang, Ranbo Yu, Chun Zhan, Wei Wang, and Xuan Liu, Editorial for special issue on advanced energy storage and materials for the 70th Anniversary of USTB, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 905-908. https://doi.org/10.1007/s12613-022-2490-8
引用本文 PDF XML SpringerLink

编者按:先进储能技术及关键材料专刊——献礼北科大70周年校庆

  • 通讯作者:

    王新东    E-mail: echem@ustb.edu.cn

  • 储能技术面向国家能源安全新战略,服务于风、光、水等可再生能源储存、转换及应用领域的国家重大战略需求,是实现“碳中和”“碳达峰”目标的技术核心。近年来,以电储能、热储能、氢储能等为代表的先进储能技术推动着高效储能系统逐步成熟。同时,包括二次电池,超级电容器,熔融盐材料,储氢材料等在内的电化学储能器件和储能材料都得到了迅速发展。 为庆祝北京科技大学成立70周年和其新成立的储能科学与工程系,经协商,由《矿物冶金与材料学报(英文版)》期刊出版“先进储能技术及关键材料”专刊。来自中科院物理所、北京理工大学、北京大学、清华大学、南开大学、上海大学、中科院过程所及北京科技大学等研究机构的顶尖科学家受邀分享他们在电化学储能材料、电化学储能器件及系统等方面的研究和展望;来自加拿大、丹麦和韩国的世界级科学家受邀分享他们在可再生能源制氢、车用燃料电池关键材料及器件等方面的研究和综述。 专刊包括了16篇文章,其中,1篇来自物理所陈立泉院士课题组,1篇来自北京理工大学吴峰院士课题组。所有论文围绕电化学储能和氢能储能的先进材料和器件,包括更高能量密度和更长寿命的材料设计和开发、对相关系统的描述和基本理解、以及电池材料的回收再利用。这些原创作品为了解先进储能材料和技术的最新进展和前沿提供了见解。 北京科技大学新成立的储能科学与工程系以“厚基础、重实践、深融合、强创新”为培养理念、以“电化学储能、先进储能材料、工业储能和智慧储能”为储能科学与工程本科专业特色、以“电储能、热储能、氢储能及碳中和”为储能化学与物理交叉学科博士和硕士学位研究生培养方向,构筑“四纵四横”的储能新格局。储能专业与学科方向致力于规模化基站储能破解可再生能源的“时空转移”、新能源车移动储能推动终端用能去碳化、工业储能破除行业能源壁垒、智慧储能重构我国能源体系。 客座编辑们希望通过本期专刊,为先进储能技术及储能材料提供一个广阔的视角,以期促进化学家、物理学家、材料科学家与交通运输、电力工业和冶金工业等用能企业之间的跨学科合作。我们衷心感谢所有作者和审稿人以及期刊编辑团队对本期特刊的奉献和大力支持。
  • Editorial

    Editorial for special issue on advanced energy storage and materials for the 70th Anniversary of USTB

    + Author Affiliations
    • loading
    • [1]
      H.F. Shang and D.G. Xia, Spinel LiMn2O4 integrated with coating and doping by Sn self-segregation, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 909.
      [2]
      W. Liu, J.X. Li, H.Y. Xu, J. Li, and X.P. Qiu, Stabilized cobalt-free lithium-rich cathode materials with an artificial lithium fluoride coating, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 917.
      [3]
      L.F. Wang, J.Y. Wang, L.Y. Wang, M.J. Zhang, R. Wang, and C. Zhan, A critical review on nickel-based cathodes in rechargeable batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 925.
      [4]
      J. Lin, J.W. Wu, E.S. Fan, X.D. Zhang, R.J. Chen, F. Wu, and L. Li, Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 942.
      [5]
      S.M. Zhang, G.J. Yang, X.Y. Li, Y.J. Li, Z.X Wang, and L.Q. Chen, Electrolyte and current collector designs for stable lithium metal anodes, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 953.
      [6]
      M. Yang, R.Y. Bi, J.Y. Wang, R.B. Yu, and D. Wang, Decoding lithium batteries through advanced in situ characterization techniques, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 965.
      [7]
      R. Gao, Z.Y. Wang, S. Liu, G.J. Shao, and X.P. Gao, Metal phosphides and borides as the catalytic host of sulfur cathode for lithium–sulfur batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 990.
      [8]
      J. Wang, S.Q. Zhao, L. Tang, F.J. Han, Y. Zhang, Y.M. Xia, L.J. Wang, and S.G. Lu, Review of the electrochemical performance and interfacial issues of high-nickel layered cathodes in inorganic all-solid-state batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1003.
      [9]
      N. Li, S.Q. Yang, H.S. Chen, S.Q. Jiao, and W.L. Song, Mechano-electrochemical perspectives on flexible lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1019.
      [10]
      K. Guo, W. Wang, and S.Q. Jiao, Recent progress and prospective on layered anode materials for potassium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1037.
      [11]
      L.Y. Xiong, H. Fu, W.W. Han, M.X. Wang, J.W. Li, W.C. Yang, and G.C. Liu, Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1053.
      [12]
      J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061.
      [13]
      X. Liu, G.Y. Liu, J.L. Xue, X.D. Wang, and Q.F. Li, Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1073.
      [14]
      Y. Liu, S.B. Huang, S.L. Peng, H. Zhang, L.F. Wang, and X.D. Wang, Novel Au nanoparticles-inlaid titanium paper for PEM water electrolysis with enhanced interfacial electrical conductivity, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1090.
      [15]
      G.Y. Liu, F.G. Hou, S.L. Peng, B.Z. Fang, and X.D. Wang, Process and challenges of stainless steel based bipolar plates for PEMFCs, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1099.
      [16]
      W.J. Yan, J.T. Zhang, A.J. Lv, S.L. Lu, Y.W. Zhong, and M.Y. Wang, Self-supporting and hierarchically porous NixFe–S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1120.

    Catalog


    • /

      返回文章
      返回