留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 3
Mar.  2023

图(11)

数据统计

分享

计量
  • 文章访问数:  865
  • HTML全文浏览量:  343
  • PDF下载量:  49
  • 被引次数: 0
Yi Liu, Jingnan Qin, Linlin Lu, Jie Xu, and Xiaolei Su, Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 525-535. https://doi.org/10.1007/s12613-022-2491-7
Cite this article as:
Yi Liu, Jingnan Qin, Linlin Lu, Jie Xu, and Xiaolei Su, Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 525-535. https://doi.org/10.1007/s12613-022-2491-7
引用本文 PDF XML SpringerLink
研究论文

利用频率选择表面提高镀银生物多孔碳的微波吸收性能

文章亮点

  • (1) 系统研究了聚乙烯吡咯烷酮(PVP)对镀覆银颗粒微观形貌的影响规律。
  • (2) 揭示了颗粒形貌对镀银多孔碳(Ag@PC)材料介电和吸波性能的影响机理。
  • (3) 通过设计频率选择表面提高了Ag@PC的吸波性能。
  • 多孔碳(PC)因其重量轻、比表面积大、表面缺陷多等特点,成为一种具有应用前景的吸波材料,然而电导率和石墨化程度低的缺点限制了其性能的提高。本研究利用杉木作为生物碳模板,采用一步水热合成法制备了镀银多孔碳(Ag@PC)材料,并对其物相组成、显微结构和电磁吸波性能进行了研究。结果表明,金属银被成功地从溶液中还原出来,并以Ag颗粒的形式均匀分布在多孔碳表面和孔洞内部。金属Ag的存在不仅提高了多孔碳的电导率,同时促进了无定型碳的石墨化过程。乙烯吡咯烷酮(PVP)的加入抑制了晶体的结晶形核的过程,起到了细化Ag颗粒粒径的作用。然而,由于形成了更连续的导电网络,未添加PVP的Ag@PC复合材料表现出更高的介电常数和更强的电磁波耗散能力。将Ag@PC与频率选择表面(FSS)复合后,其吸波性能得到了进一步的提高,在频段8.20–11.75 GHz范围内材料的反射损耗值低于−10 dB,反射损耗最小值达到了−22.5 dB。由此可见,利用金属Ag颗粒与FSS相结合是增强多孔碳材料电磁波吸收能力的有效途径。
  • Research Article

    Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation

    + Author Affiliations
    • Porous carbon (PC) is a promising electromagnetic (EM) wave absorbing material thanks to its light weight, large specific surface area as well as good dissipating capacity. To further improve its microwave absorbing performance, silver coated porous carbon (Ag@PC) is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork. Phase compositions, morphological structure, and microwave absorption capability of the Ag@PC has been explored. Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork, which accelerates graphitization process of the amorphous carbon. The Ag@PC composite without adding polyvinyl pyrrolidone (PVP) exhibits higher dielectric constant and better EM wave dissipating capability. This is because the larger particles of Ag give rise to higher electric conductivity. After combing with frequency selective surface (FSS), the EM wave absorbing performance is further improved and the frequency region below −10 dB is located in 8.20–11.75 GHz, and the minimal reflection loss value is −22.5 dB. This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material.
    • loading
    • [1]
      M.S. Cao, Y.Z. Cai, P. He, et al., 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding, Chem. Eng. J., 359(2019), p. 1265. doi: 10.1016/j.cej.2018.11.051
      [2]
      L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2−0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993. doi: 10.1016/j.coco.2021.100993
      [3]
      X. Cao, Z.R. Jia, D. Hu, and G.L. Wu, Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption, Adv. Compos. Hybrid Mater., 5(2022), p. 1030. doi: 10.1007/s42114-021-00415-w
      [4]
      J.H. Tang, L. Ma, N. Tian, et al., Synthesis and electromagnetic properties of PANI/PVP/CIP core–shell composites, Mater. Sci. Eng. B, 186(2014), p. 26. doi: 10.1016/j.mseb.2014.02.003
      [5]
      Y.Z. Long, M.M. Li, C.Z. Gu, et al., Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers, Prog. Polym. Sci., 36(2011), No. 10, p. 1415. doi: 10.1016/j.progpolymsci.2011.04.001
      [6]
      Z.Z. Shen, J.H. Chen, B. Li, et al., Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials, J. Alloys Compd., 815(2020), art. No. 152388. doi: 10.1016/j.jallcom.2019.152388
      [7]
      C.H. Sun, Z.R. Jia, S. Xu, et al., Synergistic regulation of dielectric-magnetic dual-loss and triple heterointerface polarization via magnetic MXene for high-performance electromagnetic wave absorption, J. Mater. Sci. Technol., 113(2022), p. 128. doi: 10.1016/j.jmst.2021.11.006
      [8]
      T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919. doi: 10.1016/j.cej.2021.133919
      [9]
      Y. Liu, X.H. Liu, X.Y. E, et al., Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption, J. Mater. Sci. Technol., 103(2022), p. 157. doi: 10.1016/j.jmst.2021.06.034
      [10]
      H.Q. Zhao, Y. Cheng, W. Liu, et al., Biomass-derived porous carbon-based nanostructures for microwave absorption, Nano-Micro Lett., 11(2019), No. 1, art. No. 24. doi: 10.1007/s40820-019-0255-3
      [11]
      X.M. Huang, X.H. Liu, Z.R. Jia, et al., Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1398. doi: 10.1007/s42114-021-00304-2
      [12]
      C.X. Wang, Z.R. Jia, S.Q. He, et al., Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation, J. Mater. Sci. Technol., 108(2022), p. 236. doi: 10.1016/j.jmst.2021.07.049
      [13]
      Y. Cheng, H.Q. Zhao, Y. Zhao, et al., Structure-switchable mesoporous carbon hollow sphere framework toward sensitive microwave response, Carbon, 161(2020), p. 870. doi: 10.1016/j.carbon.2020.02.011
      [14]
      D.Q. Zhang, T.T. Liu, J.Y. Cheng, et al., Light-weight and low-cost electromagnetic wave absorbers with high performances based on biomass-derived reduced graphene oxides, Nanotechnology, 30(2019), No. 44, art. No. 445708. doi: 10.1088/1361-6528/ab35fa
      [15]
      X.Y. Zhang, Z.R. Jia, F. Zhang, et al., MOF-derived NiFe2S4/Porous carbon composites as electromagnetic wave absorber, J. Colloid Interface Sci., 610(2022), p. 610. doi: 10.1016/j.jcis.2021.11.110
      [16]
      S.S. Gao, Q.D. An, Z.Y. Xiao, S.R. Zhai, and Z. Shi, Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption, RSC Adv., 8(2018), No. 34, p. 19011. doi: 10.1039/C8RA00913A
      [17]
      J.B. Xi, E.Z. Zhou, Y.J. Liu, et al., Wood-based straightway channel structure for high performance microwave absorption, Carbon, 124(2017), p. 492. doi: 10.1016/j.carbon.2017.07.088
      [18]
      Y.N. Gong, D.L. Li, C.Z. Luo, Q. Fu, and C.X. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors, Green Chem., 19(2017), No. 17, p. 4132. doi: 10.1039/C7GC01681F
      [19]
      J. Rong, F.X. Qiu, T. Zhang, et al., A facile strategy toward 3D hydrophobic composite resin network decorated with biological ellipsoidal structure rapeseed flower carbon for enhanced oils and organic solvents selective absorption, Chem. Eng. J., 322(2017), p. 397. doi: 10.1016/j.cej.2017.04.049
      [20]
      W.M. Lv, F.S. Wen, J.Y. Xiang, et al., Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries, Electrochim. Acta, 176(2015), p. 533. doi: 10.1016/j.electacta.2015.07.059
      [21]
      Y. Li, Q. Meng, J. Ma, et al., Bioinspired carbon/SnO2 composite anodes prepared from a photonic hierarchical structure for lithium batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 21, p. 11146. doi: 10.1021/acsami.5b02774
      [22]
      X. Zhang, L. Cai, Z. Xiang, and W. Lu, Hollow CuS microflowers anchored porous carbon composites as lightweight and broadband microwave absorber with flame-retardant and thermal stealth functions, Carbon, 184(2021), p. 514. doi: 10.1016/j.carbon.2021.08.026
      [23]
      H.G. Wang, F.B. Meng, J.Y. Li, et al., Carbonized design of hierarchical porous carbon/Fe3O4@Fe derived from loofah sponge to achieve tunable high-performance microwave absorption, ACS Sustainable Chem. Eng., 6(2018), No. 9, p. 11801. doi: 10.1021/acssuschemeng.8b02089
      [24]
      L.X. Wang, Y.K. Guan, X. Qiu, et al., Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal-organic framework, Chem. Eng. J., 326(2017), p. 945. doi: 10.1016/j.cej.2017.06.006
      [25]
      C. Ji, Y. Liu, J. Xu, et al., Enhanced microwave absorption properties of biomass-derived carbon decorated with transition metal alloy at improved graphitization degree, J. Alloys Compd., 890(2021), art. No. 161834. doi: 10.1016/j.jallcom.2021.161834
      [26]
      H.M. Zhao, Z.B. Fu, H.B. Chen, M. Zhong, and C.Y. Wang, Excellent electromagnetic absorption capability of Ni/carbon based conductive and magnetic foams synthesized via a green one pot route, ACS Appl. Mater. Interfaces, 8(2016), No. 2, p. 1468. doi: 10.1021/acsami.5b10805
      [27]
      J.Y. Fang, Y.S. Shang, Z. Chen, et al., Rice husk-based hierarchically porous carbon and magnetic particles composites for highly efficient electromagnetic wave attenuation, J. Mater. Chem. C, 5(2017), No. 19, p. 4695. doi: 10.1039/C7TC00987A
      [28]
      Y. Cheng, H.Q. Zhao, Z.H. Yang, et al., An unusual route to grow carbon shell on Fe3O4 microspheres with enhanced microwave absorption, J. Alloys Compd., 762(2018), p. 463. doi: 10.1016/j.jallcom.2018.05.261
      [29]
      L. Huang, J.J. Li, Z.J. Wang, et al., Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane, Carbon, 143(2019), p. 507. doi: 10.1016/j.carbon.2018.11.042
      [30]
      B. Wei, J.T. Zhou, Z.J. Yao, et al., The effect of Ag nanoparticles content on dielectric and microwave absorption properties of β-SiC, Ceram. Int., 46(2020), No. 5, p. 5788. doi: 10.1016/j.ceramint.2019.11.029
      [31]
      B.H. Xia, X.H. Zhang, J. Jiang, et al., Facile preparation of high strength, lightweight and thermal insulation Polyetherimide/Ti3C2Tx MXenes/Ag nanoparticles composite foams for electromagnetic interference shielding, Compos. Commun., 29(2022), art. No. 101028. doi: 10.1016/j.coco.2021.101028
      [32]
      Y. Liu, J. Yang, J. Xu, L.L. Lu, and X.L. Su, Electromagnetic and microwave absorption properties of Ti3SiC2/AgNWs/acrylic acid resin composite coatings with FSS incorporation, J. Alloys Compd., 899(2022), art. No. 163327. doi: 10.1016/j.jallcom.2021.163327
      [33]
      M. Sevilla and A.B. Fuertes, Catalytic graphitization of templated mesoporous carbons, Carbon, 44(2006), No. 3, p. 468. doi: 10.1016/j.carbon.2005.08.019
      [34]
      X. Qiu, L.X. Wang, H.L. Zhu, Y.K. Guan, and Q.T. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon, Nanoscale, 9(2017), No. 22, p. 7408. doi: 10.1039/C7NR02628E
      [35]
      P.B. Liu, C.Y. Zhu, S. Gao, et al., N-doped porous carbon nanoplates embedded with CoS2 vertically anchored on carbon cloths for flexible and ultrahigh microwave absorption, Carbon, 163(2020), p. 348. doi: 10.1016/j.carbon.2020.03.041
      [36]
      X. Sun, J.P. He, G.X. Li, et al., Laminated magnetic graphene with enhanced electromagnetic wave absorption properties, J. Mater. Chem. C, 1(2013), No. 4, p. 765. doi: 10.1039/C2TC00159D
      [37]
      W.J. Xing, P. Li, H. Wang, et al., The similar Cole–Cole semicircles and microwave absorption of Hexagonal Co/C composites, J. Alloys Compd., 750(2018), p. 917. doi: 10.1016/j.jallcom.2018.04.051
      [38]
      Y.N. Shi, X.H. Gao, and J. Qiu, Synthesis and strengthened microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foam, Ceram. Int., 45(2019), No. 3, p. 3126. doi: 10.1016/j.ceramint.2018.10.212
      [39]
      Z. Lou, R. Li, P. Wang, et al., Phenolic foam-derived magnetic carbon foams (MCFs) with tunable electromagnetic wave absorption behavior, Chem. Eng. J., 391(2020), art. No. 123571. doi: 10.1016/j.cej.2019.123571
      [40]
      Y. Wang, X. Gao, Y.Q. Fu, et al., Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding, Compos. B Eng., 169(2019), p. 221. doi: 10.1016/j.compositesb.2019.04.008
      [41]
      F. Wang, W.H. Gu, J.B. Chen, et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability, Nano Res., 15(2022), No. 4, p. 3720. doi: 10.1007/s12274-021-3955-1
      [42]
      F. Wang, W.H. Gu, J.B. Chen, et al., Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption, J. Mater. Sci. Technol., 105(2022), p. 92. doi: 10.1016/j.jmst.2021.06.058
      [43]
      T.T. Liu, M.Q. Cao, Y.S. Fang, Y.H. Zhu, and M.S. Cao, Green building materials lit up by electromagnetic absorption function: A review, J. Mater. Sci. Technol., 112(2022), p. 329. doi: 10.1016/j.jmst.2021.10.022
      [44]
      X.X. Wang, M. Zhang, J.C. Shu, et al., Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response, Carbon, 184(2021), p. 136. doi: 10.1016/j.carbon.2021.07.099
      [45]
      Y. Liu, J.N. Qin, H.H. Shi, et al., Electromagnetic and microwave absorption properties of Ag wrapped MXene composite with frequency selective surface incorporation, Diam. Relat. Mater., 126(2022), art. No. 108996. doi: 10.1016/j.diamond.2022.108996
      [46]
      J.B. Chen, J. Zheng, F. Wang, Q.Q. Huang, and G.B. Ji, Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption, Carbon, 174(2021), p. 509. doi: 10.1016/j.carbon.2020.12.077
      [47]
      X.Q. Cui, X.H. Liang, J.B. Chen, et al., Customized unique core–shell Fe2N@N-doped carbon with tunable void space for microwave response, Carbon, 156(2020), p. 49. doi: 10.1016/j.carbon.2019.09.041
      [48]
      L.L. Liang, W.H. Gu, Y. Wu, et al., Heterointerface engineering in electromagnetic absorbers: New insights and opportunities, Adv. Mater., 34(2022), No. 4, art. No. e2106195. doi: 10.1002/adma.202106195

    Catalog


    • /

      返回文章
      返回