留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(17)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  686
  • HTML全文浏览量:  221
  • PDF下载量:  34
  • 被引次数: 0
Junlian Wang, Lu Liu, Wen Xu, Hui Liu, Guodong Xu, Kun Huang, Fengshan Yu,  and Guoyong Huang, Separation of Pd and Pt from highly acidic leach liquor of spent automobile catalysts with monothio-Cyanex 272 and trioctylamine, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 877-885. https://doi.org/10.1007/s12613-022-2492-6
Cite this article as:
Junlian Wang, Lu Liu, Wen Xu, Hui Liu, Guodong Xu, Kun Huang, Fengshan Yu,  and Guoyong Huang, Separation of Pd and Pt from highly acidic leach liquor of spent automobile catalysts with monothio-Cyanex 272 and trioctylamine, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 877-885. https://doi.org/10.1007/s12613-022-2492-6
引用本文 PDF XML SpringerLink
研究论文

用Monothio-Cyanex 272和TOA从废汽车催化剂的高酸浸出液中分离钯和铂

  • 通讯作者:

    王俊莲    E-mail: wangjunlian306@163.com

    郁丰善    E-mail: yufengshan2008@163.com

文章亮点

  • (1) 直接从废汽车催化剂的高酸(6~8 mol/L HCl)浸出液中分离Pd和Pt;
  • (2) 详细研究了monothio-Cyanex 272和TOA萃取分离钯和铂的性能和机理;
  • (3) 提出了用monothio-Cyanex 272和TOA从废汽车催化剂的高酸浸出液中分离Pd、Pt的原则流程图。
  • 汽车尾气催化剂是燃油汽车不可缺少的一部分,铂族金属(特别是Pt、Pd和Rh)是汽车催化剂的活性成分。废汽车催化剂具有潜在的环境和健康风险,而铂族金属非常珍贵和稀有,具有很高的经济价值。因此,从废汽车催化剂中回收铂族金属近年来备受关注。废汽车催化剂的浸出液通常为高酸性HCl体系,使得直接从浸出液中高效分离钯和铂十分困难。本文采用monothio-Cyanex 272和TOA从高酸性汽车催化剂浸出液中直接分离Pd和Pt。讨论了酸度、萃取剂浓度、相比和稀释剂等参数对萃取分离Pd和Pt的影响,同时提出了分离Pd和Pt的原则流程图。结果表明,Monothio-Cyanex 272和TOA能够成功的从废汽车催化剂的高酸模拟浸出液中分离Pd和Pt。Monothio-Cyanex 272对Pd具有很强的萃取能力和选择性,仅需一级萃取即可将99.9%以上的Pd选择性地萃入有机相,酸性硫脲能够将负载的Pd有效反萃。当酸度为6 mol·L–1 HCl时,TOA对Pt和Fe具有很强的萃取能力,经过两级逆流萃取,超过99.9%的Pt和几乎所有的Fe被萃取入有机相,稀HCl能将共萃的碱金属(Fe、Cu和Co)洗涤干净。负载的Pt能被1.0 mol·L–1硫脲和0.05~0.1 mol·L–1 NaOH溶液有效反萃。Monothio-Cyanex 272和TOA可以实现从废汽车催化剂的高酸浸出液中分离Pd和Pt。
  • Research Article

    Separation of Pd and Pt from highly acidic leach liquor of spent automobile catalysts with monothio-Cyanex 272 and trioctylamine

    + Author Affiliations
    • Platinum group metals (PGMs), especially Pd, Pt, and Rh, have drawn great attention due to their unique features. Direct separation of Pd and Pt from highly acidic automobile catalyst leach liquors is disturbed by various factors. This work investigates the effect of various parameters including the acidity, extractant concentration, phase ratio A/O, and diluents on the Pd and Pt extraction and their stripping behaviors. The results show that the Pd and Pt are successfully separated from simulated leach liquor of spent automobile catalysts with monothio-Cyanex 272 and trioctylamine (TOA). Monothio-Cyanex 272 shows strong extractability and specific selectivity for Pd, and only one single stage is needed to recover more than 99.9% of Pd, leaving behind all the Pt, Rh, and base metals of Fe, Mg, Ce, Ni, Cu, and Co in the raffinate. The loaded Pd is efficiently stripped by acidic thiourea solutions. TOA shows strong extractability for Pt and Fe at acidity of 6 mol·L–1 HCl. More than 99.9% of Pt and all of the Fe are extracted into the organic phase after two stages of countercurrent extraction. Diluted HCl easily scrubs the loaded base metals (Fe, Cu, and Co). The loaded Pt is efficiently stripped by 1.0 mol·L–1 thiourea and 0.05–0.1 mol·L–1 NaOH solutions. Monothio-Cyanex 272 and TOA can realize the separation of Pd and Pt from highly acidic leach liquor of spent automobile catalysts.
    • loading
    • [1]
      H. Pal and V. Sharma, Mechanical, electrical, and thermal expansion properties of carbon nanotube-based silver and silver-palladium alloy composites, Int. J. Miner. Metall. Mater., 21(2014), No. 11, p. 1132. doi: 10.1007/s12613-014-1019-1
      [2]
      V. Nikolic, Z. Kamberovic, Z. Andic, M. Korac, M. Sokic, and V. Maksimovic, Influences of synthesis methods and modifier addition on the properties of Ni-based catalysts supported on reticulated ceramic foams, Int. J. Miner. Metall. Mater., 21(2014), No. 8, p. 806. doi: 10.1007/s12613-014-0974-x
      [3]
      China Industry Information, Development trend of supply and demand of platinum in China in 2019: Hydrogen energy is expected to drive the demand for platinum continuously, (2020-03-02) [2021-08-04]. http://www.chyxx.com/industry/202003/838942.html.
      [4]
      China Industry Information, Development trend of palladium supply and demand in China in 2019: The sixth national standard increases the amount of palladium used in fuel vehicles, (2020-03-02) [2021-08-04]. http://www.chyxx.com/industry/202003/838922.html.
      [5]
      China Economic Information Network, The global rhodium supply and demand relationship continues to be tense: rhodium recovery and reuse is of great significance under the pressure of environmental protection, (2020-06-28) [2021-08-04]. https://www.huaon.com/channel/trend/626256.html.
      [6]
      C. Saguru, S. Ndlovu, and D. Moropeng, A review of recent studies into hydrometallurgical methods for recovering PGMs from used catalytic converters, Hydrometallurgy, 182(2018), p. 44. doi: 10.1016/j.hydromet.2018.10.012
      [7]
      D.J. de Aberasturi, R. Pinedo, I.R. de Larramendi, J.I. Ruiz de Larramendi, and T. Rojo, Recovery by hydrometallurgical extraction of the platinum-group metals from car catalytic converters, Miner. Eng., 24(2011), No. 6, p. 505. doi: 10.1016/j.mineng.2010.12.009
      [8]
      A.M. Yousif, Recovery and then individual separation of platinum, palladium, and rhodium from spent car catalytic converters using hydrometallurgical technique followed by successive precipitation methods, J. Chem., 2019(2019), art. No. 2318157.
      [9]
      S.J. Liu, Mining and Metallurgy of Platinum Group Metals, Metallurgy Industry Press, Beijing, 2001.
      [10]
      M. Hasani, A. Khodadadi, S.J. Koleini, A.H. Saeedi, Y. Perez-Pacheco, and A.M. Melendez, Platinum leaching from automotive catalytic converters with aqua regia, J. Phys. Conf. Series., 786(2017), art. No. 012043. doi: 10.1088/1742-6596/786/1/012043
      [11]
      J. Gong, Y.J. Wang, W. Kong, et al., Extraction of palladium from waste catalytic converters, Chin. J. Precious Met., 39(2018), No. S1, p. 155.
      [12]
      B.R. Reddy, B. Raju, J.Y. Lee, and H.K. Park, Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336, J. Hazard. Mater., 180(2010), No. 1-3, p. 253. doi: 10.1016/j.jhazmat.2010.04.022
      [13]
      C. Nowottny, W. Halwachs, and K. Schügerl, Recovery of platinum, palladium and rhodium from industrial process leaching solutions by reactive extraction, Sep. Purif. Technol., 12(1997), No. 2, p. 135. doi: 10.1016/S1383-5866(97)00041-5
      [14]
      P. Malik and A.P. Paiva, A novel solvent extraction route for the mutual separation of platinum, palladium, and rhodium in hydrochloric acid media, Solvent Extr. Ion Exch., 28(2010), No. 1, p. 49. doi: 10.1080/07366290903408599
      [15]
      O. Ortet and A.P. Paiva, Liquid-liquid extraction of palladium(II) from chloride media by N, N'-dimethyl-N, N'-dicyclohexylthiodiglycolamide, Sep. Purif. Technol., 156(2015), p. 363. doi: 10.1016/j.seppur.2015.10.023
      [16]
      K. Senthil, U. Akiba, K. Fujiwara, F. Hamada, and Y. Kondo, New heterocyclic dithioether ligands for highly selective separation and recovery of Pd(II) from acidic leach liquors of spent automobile catalyst, Ind. Eng. Chem. Res., 56(2017), No. 4, p. 1036. doi: 10.1021/acs.iecr.6b03874
      [17]
      M. Yamada, M.R. Gandhi, U.M.R. Kunda, T. Mori, K. Haga, and A. Shibayama, Recovery of Pd(II) from leach solutions of automotive catalysts by solvent extraction with new thiophosphate extractants, Hydrometallurgy, 191(2020), art. No. 105221. doi: 10.1016/j.hydromet.2019.105221
      [18]
      S.P. Feng and K. Huang, Enhanced separation of Pd(II) and Pt(IV) from hydrochloric acid aqueous solution using 2-((2-methoxyethyl)thio)-1H-benzimidazole, Rare Met., 39(2020), No. 12, p. 1473. doi: 10.1007/s12598-020-01545-8
      [19]
      O. Ortet and A.P. Paiva, Development of tertiary thioamide derivatives to recover palladium(II) from simulated complex chloride solutions, Hydrometallurgy, 151(2015), p. 33. doi: 10.1016/j.hydromet.2014.11.001
      [20]
      M.R. Gandhi, M. Yamada, K. Haga, and A. Shibayama, Synthesis of pincer-type extractants for selective extraction of palladium from PGMs: An improved liquid–liquid extraction approach to current refining processes, Sci. Rep., 7(2017), art. No. 8709. doi: 10.1038/s41598-017-09053-z
      [21]
      M. Yamada, Y. Kaneta, M.R. Gandhi, U.M.R. Kunda, and A. Shibayama, Recovery of Pd(II) and Pt(IV) from leach liquors of automotive catalysts with calixarene-based di-n-alkylamino extractants in saturated hydrocarbon diluents, Hydrometallurgy, 184(2019), p. 103. doi: 10.1016/j.hydromet.2019.01.002
      [22]
      R.E.C. Torrejos, G.M. Nisola, S.H. Min, J.W. Han, S.P. Lee, and W.J. Chung, Highly selective extraction of palladium from spent automotive catalyst acid leachate using novel alkylated dioxa-dithiacrown ether derivatives, J. Ind. Eng. Chem., 89(2020), p. 428. doi: 10.1016/j.jiec.2020.06.015
      [23]
      M.L. Firmansyah, F. Kubota, W. Yoshida, and M. Goto, Application of a novel phosphonium-based ionic liquid to the separation of platinum group metals from automobile catalyst leach liquor, Ind. Eng. Chem. Res., 58(2019), No. 9, p. 3845. doi: 10.1021/acs.iecr.8b05848
      [24]
      J.Y. Lee, B. Raju, B.N. Kumar, J.R. Kumar, H.K. Park, and B.R. Reddy, Solvent extraction separation and recovery of palladium and platinum from chloride leach liquors of spent automobile catalyst, Sep. Purif. Technol., 73(2010), No. 2, p. 213. doi: 10.1016/j.seppur.2010.04.003
      [25]
      T.H. Nguyen, B.N. Kumar, and M.S. Lee, Selective recovery of Fe(III), Pd(II), Pt(IV), Rh(III) and Ce(III) from simulated leach liquors of spent automobile catalyst by solvent extraction and cementation, Korean J. Chem. Eng., 33(2016), No. 9, p. 2684. doi: 10.1007/s11814-016-0123-5
      [26]
      S. Harjanto, Y.C. Cao, A. Shibayama, et al., Leaching of Pt, Pd and Rh from automotive catalyst residue in various chloride based solutions, Mater. Trans., 47(2006), No. 1, p. 129. doi: 10.2320/matertrans.47.129
      [27]
      J.L. Wang, W. Xu, H. Liu, F.S. Yu, and H.J. Wang, Extractant structures and their performance for palladium extraction and separation from chloride media: A review, Miner. Eng., 163(2021), art. No. 106798. doi: 10.1016/j.mineng.2021.106798
      [28]
      J.Y. Yang and D.X. Liu, Solvent Extraction, Metallurgy Industry Press, Beijing, 1988.
      [29]
      M.L. Firmansyah, F. Kubota, and M. Goto, Selective recovery of platinum group metals from spent automotive catalysts by leaching and solvent extraction, J. Chem. Eng. Jpn, 52(2019), No. 11, p. 835. doi: 10.1252/jcej.19we093

    Catalog


    • /

      返回文章
      返回