留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(10)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  751
  • HTML全文浏览量:  238
  • PDF下载量:  52
  • 被引次数: 0
Jianlin Sun, Boyuan Huang, Jiaqi He, Erchao Meng, and Qianhao Chang, Achieving oxidation protection effect for strips hot rolling via Al2O3 nanofluid lubrication, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 908-916. https://doi.org/10.1007/s12613-022-2493-5
Cite this article as:
Jianlin Sun, Boyuan Huang, Jiaqi He, Erchao Meng, and Qianhao Chang, Achieving oxidation protection effect for strips hot rolling via Al2O3 nanofluid lubrication, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 908-916. https://doi.org/10.1007/s12613-022-2493-5
引用本文 PDF XML SpringerLink
研究论文

通过Al2O3纳米流体润滑实现板带钢热轧过程的防氧化

  • 通讯作者:

    贺佳琪    E-mail: ustbhjq@163.com

文章亮点

  • (1) 创造性地采用Al2O3纳米流体润滑剂同步实现了板带钢热轧工艺润滑和表面防氧化。
  • (2) 借助分子动力学模拟系统地研究了氧化性气体分子在热轧钢板表面的扩散行为。
  • (3) 总结并阐明了Al2O3纳米流体对热轧带钢表面的氧化抑制作用机理。
  • 板带钢热轧过程的氧化损失造成了极高的能源和材料损耗,是近年来的研究热点。而本文研究发现,将Al2O3纳米流体应用于板带钢热轧过程,能够在起到润滑作用的同时同步实现对带钢表面的氧化抑制作用,进一步通过板带钢热轧实验和分子动力学(MD)模拟研究了其作用机理。首先,Al2O3纳米粒子的加入显著提高了润滑剂的润滑性能,使轧后带钢的表面形貌最佳、粗糙度最低、表面缺陷最少。此外,钢板表面生成的氧化皮也变薄,铁氧化物中Fe2O3的比例显著变低。同时,轧后带钢表面有纳米粒子沉积,形成了厚度约193 nm的保护层。保护层主要由Al2O3和烧结的有机分子组成,阻止了钢板基体与空气的直接接触,从而实现了氧化抑制作用。分子动力学模拟结果表明,Al2O3层可以同时通过物理吸附和穿透阻隔效应阻挡了O2和H2O分子向金属基体的扩散。
  • Research Article

    Achieving oxidation protection effect for strips hot rolling via Al2O3 nanofluid lubrication

    + Author Affiliations
    • It was discovered the application of Al2O3 nanofluid as lubricant for steel hot rolling could synchronously achieve oxidation protection of strips surface. The underlying mechanism was investigated through hot rolling tests and molecular dynamics (MD) simulations. The employment of Al2O3 nanoparticles contributed to significant enhancement in the lubrication performance of lubricant. The rolled strip exhibited the best surface topography that the roughness reached lowest with the sparsest surface defects. Besides, the oxide scale generated on steel surface was also thinner, and the ratio of Fe2O3 among various iron oxides became lower. It was revealed the above oxidation protection effect of Al2O3 nanofluid was attributed to the deposition of nanoparticles on metal surface during hot rolling. A protective layer in the thickness of about 193 nm was formed to prevent the direct contact between steel matrix and atmosphere, which was mainly composed of Al2O3 and sintered organic molecules. MD simulations confirmed the diffusion of O2 and H2O could be blocked by the Al2O3 layer through physical absorption and penetration barrier effect.
    • loading
    • [1]
      L. Wang, A.K. Tieu, H.T. Zhu, G.Y. Deng, S.G. Cui, and Q. Zhu, A study of water-based lubricant with a mixture of polyphosphate and nano-TiO2 as additives for hot rolling process, Wear, 477(2021), art. No. 203895. doi: 10.1016/j.wear.2021.203895
      [2]
      A.I. Khdair and A. Ibrahim, Effect of graphene addition on the physicomechanical and tribological properties of Cu nanocomposites, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 161. doi: 10.1007/s12613-020-2183-0
      [3]
      X.L. Yu, Z.Y. Jiang, J.W. Zhao, et al., The role of oxide-scale microtexture on tribological behaviour in the nanoparticle lubrication of hot rolling, Tribol. Int., 93(2016), p. 190. doi: 10.1016/j.triboint.2015.08.049
      [4]
      S. Xiong, D. Liang, H. Wu, W. Lin, J.S. Chen, and B.S. Zhang, Preparation, characterization, tribological and lubrication performances of Eu doped CaWO4 nanoparticle as anti-wear additive in water-soluble fluid for steel strip during hot rolling, Appl. Surf. Sci., 539(2021), art. No. 148090. doi: 10.1016/j.apsusc.2020.148090
      [5]
      Y.Y. Bao, J.L. Sun, and L.H. Kong, Effects of nano-SiO2 as water-based lubricant additive on surface qualities of strips after hot rolling, Tribol. Int., 114(2017), p. 257. doi: 10.1016/j.triboint.2017.04.026
      [6]
      Y.N. Wang, Z.P. Wan, L.S. Lu, Z.H. Zhang, and Y. Tang, Friction and wear mechanisms of castor oil with addition of hexagonal boron nitride nanoparticles, Tribol. Int., 124(2018), p. 10. doi: 10.1016/j.triboint.2018.03.035
      [7]
      N.G. Demas, R.A. Erck, C. Lorenzo-Martin, O.O. Ajayi, and G.R. Fenske, Experimental evaluation of oxide nanoparticles as friction and wear improvement additives in motor oil, J. Nanomater., 2017(2017), art. No. 8425782. doi: 10.1155/2017/8425782
      [8]
      L. Xu, T.B. Ma, Y.Z. Hu, and H. Wang, Molecular dynamics simulation of the interlayer sliding behavior in few-layer graphene, Carbon, 50(2012), No. 3, p. 1025. doi: 10.1016/j.carbon.2011.10.006
      [9]
      K. Li, X. Zhang, C. Du, et al., Friction reduction and viscosity modification of cellulose nanocrystals as biolubricant additives in polyalphaolefin oil, Carbohydr. Polym., 220(2019), p. 228. doi: 10.1016/j.carbpol.2019.05.072
      [10]
      S. Roy, Y. Jazaa, and S. Sundararajan, Investigating the micropitting and wear performance of copper oxide and tungsten carbide nanofluids under boundary lubrication, Wear, 428-429(2019), p. 55. doi: 10.1016/j.wear.2019.03.007
      [11]
      C.L. Wang, J.L. Sun, C.L. Ge, and P. Wu, Enhanced lubrication performance of triethanolamine functionalized reduced graphene oxide on the cold-rolled surface of strips, Surf. Interface Anal., 53(2021), No. 9, p. 762. doi: 10.1002/sia.6977
      [12]
      B. Jin, G.Y. Chen, J. Zhao, Y.Y. He, Y.Y. Huang, and J.B. Luo, Improvement of the lubrication properties of grease with Mn3O4/graphene (Mn3O4#G) nanocomposite additive, Friction, 9(2021), No. 6, p. 1361. doi: 10.1007/s40544-020-0412-1
      [13]
      J.Q. He, J.L. Sun, Y.N. Meng, and Y. Pei, Superior lubrication performance of MoS2–Al2O3 composite nanofluid in strips hot rolling, J. Manuf. Process., 57(2020), p. 312. doi: 10.1016/j.jmapro.2020.06.037
      [14]
      J.Q. He, J.L. Sun, Y.N. Meng, H.J. Tang, and P. Wu, Improved lubrication performance of MoS2–Al2O3 nanofluid through interfacial tribochemistry, Colloids Surf. A, 618(2021), art. No. 126428. doi: 10.1016/j.colsurfa.2021.126428
      [15]
      P. Baghery, M. Farzam, A.B. Mousavi, and M. Hosseini, Ni–TiO2 nanocomposite coating with high resistance to corrosion and wear, Surf. Coat. Technol., 204(2010), No. 23, p. 3804. doi: 10.1016/j.surfcoat.2010.04.061
      [16]
      A. Kumar and M.K. Meena, Fabrication of durable corrosion-resistant polyurethane/SiO2 nanoparticle composite coating on aluminium, Colloid Polym. Sci., 299(2021), No. 6, p. 915. doi: 10.1007/s00396-021-04814-9
      [17]
      S. Dehgahi, R. Amini, and M. Alizadeh, Microstructure and corrosion resistance of Ni–Al2O3–SiC nanocomposite coatings produced by electrodeposition technique, J. Alloys Compd., 692(2017), p. 622. doi: 10.1016/j.jallcom.2016.08.244
      [18]
      A.K. Behera, A. Das, S. Das, and A. Mallik, Electrochemically functionalized graphene as an anti-corrosion reinforcement in Cu matrix composite thin films, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1525. doi: 10.1007/s12613-020-2124-y
      [19]
      I.K. Aliyu, M.K. A, and A.S. Mohammed, Wear and corrosion resistance performance of UHMWPE/GNPs nanocomposite coatings on AA2028 Al alloys, Prog. Org. Coat., 151(2021), art. No. 106072. doi: 10.1016/j.porgcoat.2020.106072
      [20]
      Z.X. Yu, H.H. Di, Y. Ma, et al., Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings, Appl. Surf. Sci., 351(2015), p. 986. doi: 10.1016/j.apsusc.2015.06.026
      [21]
      X.X. Ding, L. Wu, J. Chen, et al., A. Atrens, and F.S. Pan, Enhanced protective nanoparticle-modified MgAl-LDHs coatings on titanium alloy, Surf. Coat. Technol., 404(2020), art. No. 126449. doi: 10.1016/j.surfcoat.2020.126449
      [22]
      Y.Y. Tian, H. Feng, J. Li, Q.H. Fang, and L.C. Zhang, Nanoscale sliding friction behavior on Cu/Ag bilayers influenced by water film, Appl. Surf. Sci., 545(2021), art. No. 148957. doi: 10.1016/j.apsusc.2021.148957
      [23]
      L.P. Wu, L.M. Keer, J. Lu, B.Y. Song, and L. Gu, Molecular dynamics simulations of the rheological properties of graphene–PAO nanofluids, J. Mater. Sci., 53(2018), No. 23, p. 15969. doi: 10.1007/s10853-018-2756-8
      [24]
      A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, and W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc., 114(1992), No. 25, p. 10024. doi: 10.1021/ja00051a040
      [25]
      D.J. Evans and B.L. Holian, The Nose–Hoover thermostat, J. Chem. Phys., 83(1985), No. 8, p. 4069. doi: 10.1063/1.449071
      [26]
      Y.L. Kang and J.L. Sun, Rolling Engineering, 2nd ed, Metallurgical Industry Press, Beijing, 2014.
      [27]
      R.P. Matthews, R.D. Knusten, J.E. Westraadt, and T. Couvant, Intergranular oxidation of 316L stainless steel in the PWR primary water environment, Corros. Sci., 125(2017), p. 175. doi: 10.1016/j.corsci.2017.06.023
      [28]
      W.Z. Xia, J.W. Zhao, H. Wu, S.H. Jiao, and Z.Y. Jiang, Effects of oil-in-water based nanolubricant containing TiO2 nanoparticles on the tribological behaviour of oxidised high-speed steel, Tribol. Int., 110(2017), p. 77. doi: 10.1016/j.triboint.2017.02.013
      [29]
      L. Jia, Y.Y. Zeng, and T. Zhang, Experimental study on pore distribution characters and convert rate of CaO, J. Therm. Sci., 14(2005), No. 1, p. 87. doi: 10.1007/s11630-005-0045-8
      [30]
      Z.N. Zhang, N. Kong, H.B. Li, and J. Zhang, The migration and reaction of ions during the oxidation of Fe–Si alloy with 0.5wt% Si at 1000–1200°C, Mater. Res. Express, 5(2018), No. 6, art. No. 066506. doi: 10.1088/2053-1591/aac67b
      [31]
      N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, Cambridge, 2006.
      [32]
      H.S. Grewal, R.M. Sanjiv, H.S. Arora, et al., Activation energy and high temperature oxidation behavior of multi-principal element alloy, Adv. Eng. Mater., 19(2017), No. 11, art. No. 1700182. doi: 10.1002/adem.201700182
      [33]
      M.H. Du and H.P. Cheng, Transparent interface between classical molecular dynamics and first-principles molecular dynamics, Int. J. Quantum Chem., 93(2003), No. 1, p. 1. doi: 10.1002/qua.10480
      [34]
      A.W. Marczewski, A. Deryło-Marczewska, and A. Słota, Adsorption and desorption kinetics of benzene derivatives on mesoporous carbons, Adsorption, 19(2013), No. 2-4, p. 391. doi: 10.1007/s10450-012-9462-7
      [35]
      X.Q. Ma, Y.H. Liu, J.L. Chu, et al., Removal of zirconium from hydrous titanium dioxide, Int. J. Miner. Metall. Mater., 20(2013), No. 1, p. 1. doi: 10.1007/s12613-013-0686-7

    Catalog


    • /

      返回文章
      返回