留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 10
Oct.  2022

图(14)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  6147
  • HTML全文浏览量:  2537
  • PDF下载量:  186
  • 被引次数: 0
Zichuan Zhao, Jue Tang, Mansheng Chu, Xindong Wang, Aijun Zheng, Xiaoai Wang, and Yang Li, Direct reduction swelling behavior of pellets in hydrogen-based shaft furnaces under typical atmospheres, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1891-1900. https://doi.org/10.1007/s12613-022-2494-4
Cite this article as:
Zichuan Zhao, Jue Tang, Mansheng Chu, Xindong Wang, Aijun Zheng, Xiaoai Wang, and Yang Li, Direct reduction swelling behavior of pellets in hydrogen-based shaft furnaces under typical atmospheres, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1891-1900. https://doi.org/10.1007/s12613-022-2494-4
引用本文 PDF XML SpringerLink
研究论文

气基竖炉典型气氛下球团直接还原膨胀行为

  • 通讯作者:

    唐珏    E-mail: tangj@smm.neu.edu.cn

文章亮点

  • (1) 系统研究了气基竖炉直接还原过程中球团还原膨胀行为变化。
  • (2) 从微观尺度阐述了不同条件下球团膨胀变化机理。
  • (3) 总结并提出了控制球团还原膨胀行为的适宜还原条件。
  • 氢基竖炉工艺因其低碳排放而受到越来越多的关注,含铁炉料的还原行为对其运行有着显著的影响。本文深入研究了典型氢冶金条件下还原度、温度和气氛对球团膨胀行为的影响。结果表明,球团在还原初期迅速膨胀,然后在还原度约为40%时达到最大还原膨胀指数(RSI)。还原过程中氧化铁的结晶转变是球团膨胀的主要原因。在850–1050°C范围内,RSI随着温度的升高而显著增加,在100%H2的气体成分中,最大RSI从6.66%增加到25.0%。随着还原温度的升高,球团受到更大的热应力,导致体积增加。在950°C的温度下,随着H2在还原气中的体积比从55%增加到100%,最大RSI从19.78%下降到17.35%。金属铁倾向于以层状结构生长而不是铁晶须形貌,因此,颗粒内部变得规则,RSI降低。总之,控制合理的温度和增加还原气H2比例是降低球团RSI的有效方法。
  • Research Article

    Direct reduction swelling behavior of pellets in hydrogen-based shaft furnaces under typical atmospheres

    + Author Affiliations
    • Hydrogen-based shaft furnace process is gaining more and more attention due to its low carbon emission, and the reduction behavior of iron bearing burdens significantly affects its operation. In this work, the effects of reduction degree, temperature, and atmosphere on the swelling behavior of pellet has been studied thoroughly under typical hydrogen metallurgy conditions. The results show that the pellets swelled rapidly in the early reduction stage, then reached a maximum reduction swelling index (RSI) at approximately 40% reduction degree. The crystalline transformation of the iron oxides during the reduction process was the main reason of pellets swelling. The RSI increased significantly with increasing temperature in the range of 850–1050°C, the maximum RSI increased from 6.66% to 25.0% in the gas composition of 100% H2. With the temperature increased, the pellets suffered more thermal stress resulting in an increase of the volume. The maximum RSI decreased from 19.78% to 17.35% with the volume proportion of H2 in the atmosphere increased from 55% to 100% at the temperature of 950°C. The metallic iron tended to precipitate in a lamellar structure rather than whiskers. Consequently, the inside of the pellets became regular, so the RSI decreased. Overall, controlling a reasonable temperature and increasing the H2 proportion is an effective way to decrease the RSI of pellets.
    • loading
    • [1]
      S. Ueda, Preface to the special issue on “development of technologies for the low carbon ironmaking”, ISIJ Int., 55(2015), No. 6, p. 1145. doi: 10.2355/isijinternational.55.1145
      [2]
      F. Zhang, P.C. Zhao, M. Niu, and J. Maddy, The survey of key technologies in hydrogen energy storage, Int. J. Hydrogen Energy, 41(2016), No. 33, p. 14535. doi: 10.1016/j.ijhydene.2016.05.293
      [3]
      I.P. Jain, Hydrogen the fuel for 21st century, Int. J. Hydrogen Energy, 34(2009), No. 17, p. 7368. doi: 10.1016/j.ijhydene.2009.05.093
      [4]
      S. Dunn, Hydrogen futures: Toward a sustainable energy system, Int. J. Hydrogen Energy, 27(2002), No. 3, p. 235. doi: 10.1016/S0360-3199(01)00131-8
      [5]
      J. Oh and D. Noh, The reduction kinetics of hematite particles in H2 and CO atmospheres, Fuel, 196(2017), p. 144. doi: 10.1016/j.fuel.2016.10.125
      [6]
      J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
      [7]
      J.K. Wright, Volume changes of high-grade iron ore pellets reduced in a fixed bed under isothermal and non-isothermal conditions, ISIJ Int., 17(1977), No. 12, p. 726. doi: 10.2355/isijinternational1966.17.726
      [8]
      M. Kumar, H. Baghel, and S.K. Patel, Reduction and swelling of fired hematite iron ore pellets by statistical design of experiment, Miner. Process. Extr. Metall. Rev., 34(2013), No. 4, p. 249. doi: 10.1080/08827508.2012.656776
      [9]
      H.T. Wang and H.Y. Sohn, Effects of reducing gas on swelling and iron whisker formation during the reduction of iron oxide compact, Steel Res. Int., 83(2012), No. 9, p. 903. doi: 10.1002/srin.201200054
      [10]
      L. Carmo de Lima, A proposal of an alternative route for the reduction of iron ore in the eastern Amazonia, Int. J. Hydrogen Energy, 29(2004), No. 6, p. 659. doi: 10.1016/S0360-3199(03)00053-3
      [11]
      Y. Kapelyushin, Y. Sasaki, J.Q. Zhang, S. Jeong, and O. Ostrovski, Effects of temperature and gas composition on reduction and swelling of magnetite concentrates, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2263. doi: 10.1007/s11663-016-0719-5
      [12]
      M.H. Jeong, D.H. Lee, and J.W. Bae, Reduction and oxidation kinetics of different phases of iron oxides, Int. J. Hydrogen Energy, 40(2015), No. 6, p. 2613. doi: 10.1016/j.ijhydene.2014.12.099
      [13]
      W.H. Kim, S. Lee, S.M. Kim, and D.J. Min, The retardation kinetics of magnetite reduction using H2 and H2–H2O mixtures, Int. J. Hydrogen Energy, 38(2013), No. 10, p. 4194. doi: 10.1016/j.ijhydene.2013.01.147
      [14]
      M. Singh and B. Björkman, Effect of processing parameters on the swelling behaviour of cement-bonded briquettes, ISIJ Int., 44(2004), No. 1, p. 59. doi: 10.2355/isijinternational.44.59
      [15]
      T.S. Tengku Saharuddin, A. Samsuri, F. Salleh, R. Othaman, M.B. Kassim, M.W. Mohamed Hisham, and M.A. Yarmo, Studies on reduction of chromium doped iron oxide catalyst using hydrogen and various concentration of carbon monoxide, Int. J. Hydrogen Energy, 42(2017), No. 14, p. 9077. doi: 10.1016/j.ijhydene.2016.08.151
      [16]
      K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymański, and T. Wiltowski, Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process, Int. J. Hydrogen Energy, 30(2005), No. 15, p. 1543. doi: 10.1016/j.ijhydene.2004.10.013
      [17]
      T. Sharma, R.C. Gupta, and B. Prakash, Swelling of iron ore pellets by statistical design of experiment, ISIJ Int., 32(1992), No. 12, p. 1268. doi: 10.2355/isijinternational.32.1268
      [18]
      A.A. El-Geassy, M.I. Nasr, and M.M. Hessien, Effect of reducing gas on the volume change during reduction of iron oxide compacts, ISIJ Int., 36(1996), No. 6, p. 640. doi: 10.2355/isijinternational.36.640
      [19]
      S. Hayashi and Y. Iguchi, Influence of several conditions on abnormal swelling of hematite pellets during reduction with H2–CO gas mixtures, Ironmaking Steelmaking, 32(2005), No. 4, p. 353. doi: 10.1179/174328105X28838
      [20]
      H.M. Long, H.T. Wang, Z.X. Di, T.J. Chun, and Z.G. Liu, Influences of hydrogen-enriched atmosphere under coke oven gas injection on reduction swelling behaviors of oxidized pellet, J. Cent. South Univ., 23(2016), No. 8, p. 1890. doi: 10.1007/s11771-016-3244-4
      [21]
      Z.C. Wang, M.S. Chu, Z.G. Liu, Z.Y. Chen, and X.X. Xue, Effects of temperature and atmosphere on pellets reduction swelling index, J. Iron Steel Res. Int., 19(2012), No. 10, p. 7. doi: 10.1016/S1006-706X(12)60144-7
      [22]
      W. Li, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Effect of reducing conditions on swelling behavior and mechanism of Hongge vanadium titanomagnetite-oxidized pellet with hydrogen-rich gases, Int. J. Hydrog. Energy, 42(2017), No. 39, p. 24667. doi: 10.1016/j.ijhydene.2017.07.073
      [23]
      R.S. Xu, J.L. Zhang, H.B. Zuo, K.X. Jiao, Z.W. Hu, and X.D. Xing, Mechanisms of swelling of iron ore oxidized pellets in high reduction potential atmosphere, J. Iron Steel Res. Int., 22(2015), No. 1, p. 1. doi: 10.1016/S1006-706X(15)60001-2
      [24]
      J.Y. Fu, and D.Q. Zhu, Iron Ore Oxidized Pellets Basic Principle, Process and Equipment, Central South University Press, Changsha, 2005.
      [25]
      D.H. St John, S.P. Matthew, and P.C. Hayes, Establishment of product morphology during the initial stages of wustite reduction, Metall. Trans. B, 15(1984), No. 4, p. 709. doi: 10.1007/BF02657293
      [26]
      M. Chang and L.C. de Jonghe, Whisker growth in reduction of oxides, Metall. Trans. B, 15(1984), No. 4, p. 685. doi: 10.1007/BF02657290

    Catalog


    • /

      返回文章
      返回