留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(6)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  934
  • HTML全文浏览量:  340
  • PDF下载量:  68
  • 被引次数: 0
Yun Zhao, Juping Tu, Liangxian Chen, Junjun Wei, Jinlong Liu,  and Chengming Li, Toughness enhancement of single-crystal diamond by the homoepitaxial growth of periodic nitrogen-doped nano-multilayers, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 766-771. https://doi.org/10.1007/s12613-022-2497-1
Cite this article as:
Yun Zhao, Juping Tu, Liangxian Chen, Junjun Wei, Jinlong Liu,  and Chengming Li, Toughness enhancement of single-crystal diamond by the homoepitaxial growth of periodic nitrogen-doped nano-multilayers, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 766-771. https://doi.org/10.1007/s12613-022-2497-1
引用本文 PDF XML SpringerLink
研究论文

提升金刚石的韧性:同质外延生长周期性氮掺杂纳米多层单晶金刚石

    * 共同第一作者
  • 通讯作者:

    刘金龙    E-mail: liujinlong@ustb.edu.cn

    李成明    E-mail: chengmli@mater.ustb.edu.cn

文章亮点

  • (1) 采用MPCVD生长周期性氮掺杂纳米多层单晶金刚石。
  • (2) 周期性氮掺杂CVD层的断裂韧性约为HPHT籽晶的2.1倍。
  • (3) 周期性的压应力和张应力导致金刚石的韧性提升。
  • 采用微波等离子体化学气相沉积生长周期性氮掺杂纳米多层单晶金刚石。通过光发射谱判定腔室中气体(CH4和H2)的残余时间,确定纳米多层的生长工艺,进而获得周期性氮掺杂纳米多层单晶金刚石。当周期性氮掺杂纳米多层中单个氮掺杂层的厚度约为96 nm时,在杨氏模量为1000 GPa下,其断裂韧性为18.2 MPa∙m1/2。周期性氮掺杂CVD层的断裂韧性约为HPHT籽晶的2.1倍。周期性的氮掺杂层产生了周期性的压应力和张应力,因此显著提高了金刚石的断裂韧性。高韧性的单晶金刚石在高压顶砧和刀具上具有广泛的应用。
  • Research Article

    Toughness enhancement of single-crystal diamond by the homoepitaxial growth of periodic nitrogen-doped nano-multilayers

    + Author Affiliations
    • Periodic nitrogen-doped homoepitaxial nano-multilayers were grown by microwave plasma chemical vapor deposition. The residual time of gases (such as CH4 and N2) in the chamber was determined by optical emission spectroscopy to determine the nano-multilayer growth process, and thin, nanoscale nitrogen-doped layers were obtained. The highest toughness of 18.2 MPa∙m1/2 under a Young’s modulus of 1000 GPa is obtained when the single-layer thickness of periodic nitrogen-doped nano-multilayers is about 96 nm. The fracture toughness of periodic nitrogen-doped CVD layer is about 2.1 times that of the HPHT seed substrate. Alternating tensile and compressive stresses are derived from periodic nitrogen doping; hence, the fracture toughness is significantly improved. Single-crystal diamond with a high toughness demonstrates wide application prospects for high-pressure anvils and single-point diamond cutting tools.
    • loading
    • Supplementary Information-s12613-022-2497-1.docx
    • [1]
      Q. Huang, D. Yu, B. Xu, et al., Nanotwinned diamond with unprecedented hardness and stability, Nature, 510(2014), No. 7504, p. 250. doi: 10.1038/nature13381
      [2]
      Q.L. Zhang, Q.L. Zhao, S. To, B. Guo, and W.J. Zhai, Diamond wheel wear mechanism and its impact on the surface generation in parallel diamond grinding of RB-SiC/Si, Diamond Relat. Mater., 74(2017), p. 16. doi: 10.1016/j.diamond.2017.01.019
      [3]
      B. Akbari and S. Miska, The effects of chamfer and back rake angle on PDC cutters friction, J. Nat. Gas Sci. Eng., 35(2016), p. 347. doi: 10.1016/j.jngse.2016.08.043
      [4]
      K. Miyazaki, T. Ohno, H. Karasawa, and H. Imaizumi, Performance of polycrystalline diamond compact bit based on laboratory tests assuming geothermal well drilling, Geothermics, 80(2019), p. 185. doi: 10.1016/j.geothermics.2019.03.006
      [5]
      L. Zheng, W.D. Wei, Y. Feng, et al., Drilling machinability of engineering ceramics under low-frequency axial vibration processing by sintering/brazing composite diamond trepanning bit, Ceram. Int., 45(2019), No. 9, p. 11905. doi: 10.1016/j.ceramint.2019.03.077
      [6]
      X.C. Wang, C.C. Wang, X.T. Shen, and F.H. Sun, Tribological properties of diamond films for high-speed drawing Al alloy wires using water-based emulsions, Tribol. Int., 123(2018), p. 92. doi: 10.1016/j.triboint.2018.03.004
      [7]
      Y.Z. Guo, J.L. Liu, J.W. Liu, et al., Comparison of α particle detectors based on single-crystal diamond films grown in two types of gas atmospheres by microwave plasma-assisted chemical vapor deposition, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 703. doi: 10.1007/s12613-019-1944-0
      [8]
      P.P. Wang, G.Q. Chen, W.J. Li, et al., Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1821. doi: 10.1007/s12613-020-2114-0
      [9]
      X.L. Yuan, Y.T. Zheng, X.H. Zhu, et al., Recent progress in diamond-based MOSFETs, Int. J. Miner. Metall. Mater., 26(2019), No. 10, pp. 1195-1205. doi: 10.1007/s12613-019-1843-4
      [10]
      A. Banerjee, D. Bernoulli, H.T. Zhang, et al., Ultralarge elastic deformation of nanoscale diamond, Science, 360(2018), No. 6386, p. 300. doi: 10.1126/science.aar4165
      [11]
      J. Koehler, Attempt to design a strong solid, Phys. Rev. B, 2(1970), p. 547.
      [12]
      Y. Zhao, C.M. Li, J.L. Liu, et al., The interface and mechanical properties of a CVD single crystal diamond produced by multilayered nitrogen doping epitaxial growth, Materials, 12(2019), No. 15, art. No. 2492. doi: 10.3390/ma12152492
      [13]
      M.A. Lobaev, A.M. Gorbachev, S.A. Bogdanov, et al., NV-center formation in single crystal diamond at different CVD growth conditions, Phys. Status Solidi A, 215(2018), No. 22, art. No. 1800205. doi: 10.1002/pssa.201800205
      [14]
      M.A. Lobaev, A.M. Gorbachev, S.A. Bogdanov, et al., Influence of CVD diamond growth conditions on nitrogen incorporation, Diamond Relat. Mater., 72(2017), p. 1. doi: 10.1016/j.diamond.2016.12.011
      [15]
      M.A. Lobaev, A.M. Gorbachev, A.L. Vikharev, et al., Misorientation angle dependence of boron incorporation into CVD diamond delta layers, Phys. Status Solidi B, 256(2019), No. 7, art. No. 1800606. doi: 10.1002/pssb.201800606
      [16]
      N.V. Novikov and S.N. Dub, Fracture toughness of diamond single crystals, J. Hard Mater., 2(1991), No. 1, p. 3.
      [17]
      M.D. Drory, R.H. Dauskardt, A. Kant, and R.O. Ritchie, Fracture of synthetic diamond, J. Appl. Phys., 78(1995), No. 5, p. 3083. doi: 10.1063/1.360060
      [18]
      C.S. Yan, H. Mao, W. Li, J. Qian, Y.S. Zhao, and R. Hemley, Ultrahard diamond single crystals from chemical vapor deposition, Phys. Status Solidi A, 201(2004), No. 4, p. R25.
      [19]
      Q. Liang, C.S. Yan, Y.F. Meng, et al., Enhancing the mechanical properties of single-crystal CVD diamond, J. Phys. Condens. Matter, 21(2009), No. 36, art. No. 364215. doi: 10.1088/0953-8984/21/36/364215
      [20]
      X. Liu, Y.Y. Chang, S.N. Tkachev, C.R. Bina, and S.D. Jacobsen, Elastic and mechanical softening in boron-doped diamond, Sci. Rep., 7(2017), art. No. 42921. doi: 10.1038/srep42921
      [21]
      A. Tallaire, M. Lesik, V. Jacques, et al., Temperature dependent creation of nitrogen-vacancy centers in single crystal CVD diamond layers, Diamond Relat. Mater., 51(2015), p. 55. doi: 10.1016/j.diamond.2014.11.010
      [22]
      E.V. Bushuev, V.Y. Yurov, A.P. Bolshakov, et al., Express in situ measurement of epitaxial CVD diamond film growth kinetics, Diamond Relat. Mater., 72(2017), p. 61.[LinkOut]. doi: 10.1016/j.diamond.2016.12.021
      [23]
      K. Ohno, F. Joseph Heremans, L.C. Bassett, et al., Engineering shallow spins in diamond with nitrogen delta-doping, Appl. Phys. Lett., 101(2012), No. 8, art. No. 082413. doi: 10.1063/1.4748280
      [24]
      T.R. Anthony, Stresses generated by impurities in diamond, Diamond Relat. Mater., 4(1995), No. 12, p. 1346. doi: 10.1016/0925-9635(95)00317-7
      [25]
      S. Zhang, Thin Films and Coatings: Toughening and Toughness Characterization, CRC Press, Boca Raton, FL, 2015, p. 28.
      [26]
      Y. von Kaenel, J. Stiegler, J. Michler, and E. Blank, Stress distribution in heteroepitaxial chemical vapor deposited diamond films, J. Appl. Phys., 81(1997), No. 4, p. 1726. doi: 10.1063/1.364006

    Catalog


    • /

      返回文章
      返回