留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(12)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  382
  • HTML全文浏览量:  120
  • PDF下载量:  17
  • 被引次数: 0
Ning Guo, Qi Cheng, Yunlong Fu, Yang Gao, Hao Chen, Shuai Zhang, Xin Zhang, and Jinlong He, Microstructure and microhardness of aluminium alloy with underwater and in-air wire-feed laser deposition, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 670-677. https://doi.org/10.1007/s12613-022-2500-x
Cite this article as:
Ning Guo, Qi Cheng, Yunlong Fu, Yang Gao, Hao Chen, Shuai Zhang, Xin Zhang, and Jinlong He, Microstructure and microhardness of aluminium alloy with underwater and in-air wire-feed laser deposition, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 670-677. https://doi.org/10.1007/s12613-022-2500-x
引用本文 PDF XML SpringerLink
研究论文

水下和陆上送丝式激光沉积铝合金的微观组织和显微硬度

  • 通讯作者:

    付云龙    E-mail: fuyunl2022@126.com

文章亮点

  • (1) 在薄壁铝合金管表面进行了水下原位送丝式激光沉积。
  • (2) 研究了水下和陆上激光沉积过程中晶粒生长机制和镁元素烧损机理。
  • (3) 分析了水环境对激光沉积铝合金显微硬度的影响并揭示了原因。
  • 铝合金因其比强度高、耐腐蚀性能好而被广泛应用于船舶和核电等领域。然而,由于服役环境恶劣,铝合金易于发生腐蚀失效。与传统修复方法相比,水下送丝式激光沉积具有受水压影响小、自动化程度高等优点。目前,对于薄壁管状结构铝合金的表面修复研究较少,尤其是水环境下的原位表面修复。本文首次在薄壁管状结构铝合金的表面进行了水下原位送丝式激光沉积,并与陆上送丝式激光沉积进行了对比分析。水下和陆上沉积层均成形良好,不存在未熔合、裂纹等缺陷。与陆上沉积层相比,水下沉积层的氧化程度略重。在水下和陆上沉积层的熔化区中,柱状晶均在熔合线处形核,并沿最大冷却速率方向生长;在沉积区中均形成了等轴晶。随着激光沉积环境从陆上转变为水下,沉积区宽度和熔化区高度均减小,而沉积角和沉积区高度均增大。由于水环境中激光沉积过程的冷却速率较大,使得峰值温度较低且高温停留时间较短,导致水下激光沉积的晶粒尺寸较小,大角度晶界所占比例较低。此外,水下沉积区的镁元素含量高于陆上的,表明水环境的存在有利于降低沉积区中镁元素烧损。水下沉积层的平均显微硬度高于陆上的,这主要与晶粒尺寸和镁元素烧损有关,根据Hall–Petch公式,材料的晶粒尺寸越细小,显微硬度越高;另外,镁元素含量较高,有利于提高铝-镁合金的显微硬度。
  • Research Article

    Microstructure and microhardness of aluminium alloy with underwater and in-air wire-feed laser deposition

    + Author Affiliations
    • This study carried out the underwater and in-air wire-feed laser deposition of an aluminium alloy with a thin-walled tubular structure. For both the underwater and in-air deposition layers, both were well-formed and incomplete fusion, cracks, or other defects did not exist. Compared with the single-track deposition layer in air, the oxidation degree of the underwater single-track deposition layer was slightly higher. In both the underwater and in-air deposition layers, columnar dendrites nucleated close to the fusion line and grew along the direction of the maximum cooling rate in the fusion region (FR), while equiaxed grains formed in the deposited region (DR). As the environment changed from air to water, the width of DR and height of FR decreased, but the deposition angle and height of DR increased. The grain size and ratio of the high-angle boundaries also decreased due to the large cooling rate and low peak temperature in the water environment.Besides, the existence of a water environment benefitted the reduction of magnesium element burning loss in the DR. The microhardness values of the underwater deposition layer were much larger than those of the in-air layer, owing to the fine grains and high magnesium content.
    • loading
    • [1]
      E.B. Moustafa and A.O. Mosleh, Effect of (Ti–B) modifier elements and FSP on 5052 aluminum alloy, J. Alloys Compd., 823(2020), art. No. 153745. doi: 10.1016/j.jallcom.2020.153745
      [2]
      C. Duraipandi, A. Khan M, J.J.T. Winowlin, N.M. Ghazaly, and P.M. Mashinini, Solid particle erosion studies of thermally deposited alumina–titania coatings on an aluminum alloy, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1186. doi: 10.1007/s12613-020-2099-8
      [3]
      H.M. Xia, L. Zhang, Y.C. Zhu, et al., Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1295. doi: 10.1007/s12613-020-2009-0
      [4]
      R.Q. Lu, L. Zhang, S.W. Zheng, et al., Microstructure, mechanical properties and deformation mechanisms of an Al–Mg alloy processed by the cyclical continuous expanded extrusion and drawing approach, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 108. doi: 10.1007/s12613-021-2342-y
      [5]
      D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, Additive manufacturing of metals, Acta Mater., 117(2016), p. 371. doi: 10.1016/j.actamat.2016.07.019
      [6]
      C. Shang, G.J. Xu, C.Y. Wang, G. Yang, and J.H. You, Laser deposition manufacturing of bimetallic structure from TA15 to inconel 718 via copper interlayer, Mater. Lett., 252(2019), p. 342. doi: 10.1016/j.matlet.2019.06.030
      [7]
      L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Mater., 58(2010), No. 9, p. 3303. doi: 10.1016/j.actamat.2010.02.004
      [8]
      D.I. Adebiyi and A.P.I. Popoola, Mitigation of abrasive wear damage of Ti–6Al–4V by laser surface alloying, Mater. Des., 74(2015), p. 67. doi: 10.1016/j.matdes.2015.02.010
      [9]
      H. Hosseini-Tayeb and S.M. Rafiaei, Enhanced microstructural and mechanical properties of Stellite/WC nanocomposite on Inconel 718 deposited through vibration-assisted laser cladding, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 327. doi: 10.1007/s12613-020-2211-0
      [10]
      W.U.H. Syed and L. Li, Effects of wire feeding direction and location in multiple layer diode laser direct metal deposition, Appl. Surf. Sci., 248(2005), No. 1-4, p. 518. doi: 10.1016/j.apsusc.2005.03.039
      [11]
      M. Moradi, A. Ashoori, and A. Hasani, Additive manufacturing of stellite 6 superalloy by direct laser metal deposition ― Part 1: Effects of laser power and focal plane position, Opt. Laser Technol., 131(2020), art. No. 106328. doi: 10.1016/j.optlastec.2020.106328
      [12]
      M. Froend, S. Riekehr, N. Kashaev, B. Klusemann, and J. Enz, Process development for wire-based laser metal deposition of 5087 aluminium alloy by using fibre laser, J. Manuf. Process., 34(2018), p. 721. doi: 10.1016/j.jmapro.2018.06.033
      [13]
      N. Guo, X. Xing, H.Y. Zhao, C.W. Tan, J.C. Feng, and Z.Q. Deng, Effect of water depth on weld quality and welding process in underwater fiber laser welding, Mater. Des., 115(2017), p. 112. doi: 10.1016/j.matdes.2016.11.044
      [14]
      X.R. Feng, X.F. Cui, W. Zheng, et al., Performance of underwater laser cladded nickel aluminum bronze by applying zinc protective layer and titanium additives, J. Mater. Process. Technol., 266(2019), p. 544. doi: 10.1016/j.jmatprotec.2018.11.036
      [15]
      X. Wen, G. Jin, X.F. Cui, et al., Underwater wet laser cladding on 316L stainless steel: A protective material assisted method, Opt. Laser Technol., 111(2019), p. 814. doi: 10.1016/j.optlastec.2018.09.022
      [16]
      N. Guo, Y.L. Fu, X. Xing, Y.K. Liu, S.X. Zhao, and J.C. Feng, Underwater local dry cavity laser welding of 304 stainless steel, J. Mater. Process. Technol., 260(2018), p. 146. doi: 10.1016/j.jmatprotec.2018.05.025
      [17]
      Y.L. Fu, N. Guo, G.H. Wang, M.Q. Yu, Q. Cheng, and D. Zhang, Underwater additive manufacturing of Ti-6Al-4V alloy by laser metal deposition: Formability, gran growth and microstructure evolution, Mater. Des., 197(2021), art. No. 109196. doi: 10.1016/j.matdes.2020.109196
      [18]
      G.Y. Chen, B. Wang, S. Mao, P.X. Zhong, and J. He, Research on the “∞”-shaped laser scanning welding process for aluminum alloy, Opt. Laser Technol., 115(2019), p. 32. doi: 10.1016/j.optlastec.2019.01.046
      [19]
      J.X. Fang, J.H. Mo, and J.J. Li, Microstructure difference of 5052 aluminum alloys under conventional drawing and electromagnetic pulse assisted incremental drawing, Mater. Charact., 129(2017), p. 88. doi: 10.1016/j.matchar.2017.04.035
      [20]
      H.W. Jiang, N. Li, Z. Xu, Z.S. Fan, H.P. Yu, and L. Liu, Microstructure, texture and mechanical properties of 5A02 aluminum alloy tubes under electromagnetic bulging, Mater. Des., 82(2015), p. 106. doi: 10.1016/j.matdes.2015.05.047
      [21]
      E. Brandl, V. Michailov, B. Viehweger, and C. Leyens, Deposition of Ti–6Al–4V using laser and wire, part II: Hardness and dimensions of single beads, Surf. Coat. Technol., 206(2011), No. 6, p. 1130. doi: 10.1016/j.surfcoat.2011.07.094
      [22]
      Z.D. Wang, G.F. Sun, Y. Lu, et al., High-performance Ti–6Al–4V with graded microstructure and superior properties fabricated by powder feeding underwater laser metal deposition, Surf. Coat. Technol., 408(2021), art. No. 126778. doi: 10.1016/j.surfcoat.2020.126778
      [23]
      Z.D. Wang, G.F. Sun, M.Z. Chen, et al., Investigation of the underwater laser directed energy deposition technique for the on-site repair of HSLA-100 steel with excellent performance, Addit. Manuf., 39(2021), art. No. 101884. doi: 10.1016/j.addma.2021.101884
      [24]
      Y. Zhou, S.Y. Chen, X.T. Chen, T. Cui, J. Liang, and C.S. Liu, The evolution of bainite and mechanical properties of direct laser deposition 12CrNi2 alloy steel at different laser power, Mater. Sci. Eng. A, 742(2019), p. 150. doi: 10.1016/j.msea.2018.10.092
      [25]
      X.H. Zhan, J.C. Chen, J.J. Liu, Y.H. Wei, J.J. Zhou, and Y. Meng, Microstructure and magnesium burning loss behavior of AA6061 electron beam welding joints, Mater. Des., 99(2016), p. 449. doi: 10.1016/j.matdes.2016.03.058

    Catalog


    • /

      返回文章
      返回