留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(6)  / 表(7)

数据统计

分享

计量
  • 文章访问数:  441
  • HTML全文浏览量:  127
  • PDF下载量:  15
  • 被引次数: 0
Haozhen Wang, Lin Lin, and Yingshu Liu, Eco-friendly physical blowing agent mass loss of bio-based polyurethane rigid foam materials, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 782-789. https://doi.org/10.1007/s12613-022-2502-8
Cite this article as:
Haozhen Wang, Lin Lin, and Yingshu Liu, Eco-friendly physical blowing agent mass loss of bio-based polyurethane rigid foam materials, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 782-789. https://doi.org/10.1007/s12613-022-2502-8
引用本文 PDF XML SpringerLink
研究论文

基于生物基聚氨酯硬泡环保发泡剂逸散性研究

  • 通讯作者:

    刘应书    E-mail: ysliua@126.com

文章亮点

  • (1)设计了物理发泡剂在聚氨酯发泡过程中逸散损失量的测量方法——加水补差法。
  • (2)采用该方法测试了HCFC-141b、HFC-245fa、HFC-365mfc、HFCO-1233zd(E)和HFO-1336mzzZ五种发泡剂在生物基聚醚发泡聚氨酯硬泡中的发泡剂逸散损失量。
  • (3)分析了物理发泡剂逸散损失的机理及关键影响因素。
  • 聚氨酯硬泡生产过程中会伴随一定量的物理发泡剂(PBA)逸散损失,可燃性PBA逸散对生产安全与环境污染产生影响,不可燃PBA价格高,其逸散损失会提高产品成本。从生产安全、环境保护和经济效益等角度考虑,准确有效地测量PBA在发泡过程中的损失量并研究损失机理很有必要。本研究通过系统的实验设计,研究了生物基聚氨酯硬泡PBA逸散特性,首次定量测出了其中多种环保型PBA的损失量。本方法的核心为加水补差法,该方法对不同发泡形态的泡沫具有极高的容错率。平行组实验的标准差说明该方法稳定可靠,可以用于生物基及石油基聚氨酯发泡过程中不同PBA实际损失量的测量。研究结果表明,不同PBA发泡体系聚氨酯硬泡中PBA损失量与其初始质量浓度$ \omega $正相关,对于任一确定的聚氨酯发泡体系,PBA损失率$ {R}_{1} $与其初始质量浓度$ \omega $的关系近似为线性。PBA逸散到空气中的主要途径是其沿泡沫上表面的蒸发/逸出,本研究进一步揭示了PBA的散失机理:PBA沿泡沫上表面蒸发/逸出属于扩散行为,其扩散动力来源于PBA在界面层内的化学势与其在外侧空气中的化学势之差。
  • Research Article

    Eco-friendly physical blowing agent mass loss of bio-based polyurethane rigid foam materials

    + Author Affiliations
    • Through systematical experiment design, the physical blowing agent (PBA) mass loss of bio-based polyurethane rigid foam (PURF) in the foaming process was measured and calculated in this study, and different eco-friendly PBA mass losses were measured quantitatively for the first time. The core of the proposed method is to add water to replace the difference, and this method has a high fault tolerance rate for different foaming forms of foams. The method was proved to be stable and reliable through the standard deviations $ {\sigma }_{1} $ and $ {\sigma }_{2} $ for $ {R}_{1} $ (ratio of the PBA mass loss to the material total mass except the PBA) and $ {R}_{2} $ (ratio of the PBA mass loss to the PBA mass in the material total mass) in parallel experiments. It can be used to measure and calculate the actual PBA mass loss in the foaming process of both bio-based and petroleum-based PURF. The results show that the PBA mass loss in PURF with different PBA systems is controlled by its initial mass content of PBA in PU materials $ \omega $. The main way for PBA to dissipate into the air is evaporation/escape along the upper surface of foam. This study further reveals the mechanism of PBA mass loss: the evaporation/escape of PBA along the upper surface of foam is a typical diffusion behavior. Its spread power comes from the difference between the chemical potential of PBA in the interface layer and that in the outside air. For a certain PURF system, $ {R}_{1} $ has approximately linear relationship with the initial mass content of PBA in PU materials $ \omega $, which can be expressed by the functional relationship $ {R}_{1}=k\omega $, where $ k $ is a variable related to PBA’s own attributes.
    • loading
    • [1]
      M.F. Sonnenschein, Polyurethanes: Science, Technology, Markets, and Trends, John Wiley & Sons, Inc., Hoboken, 2014.
      [2]
      J.M. Kim, D.H. Kim, J. Kim, J.W. Lee, and W.N. Kim, Effect of graphene on the sound damping properties of flexible polyurethane foams, Macromol. Res., 25(2017), No. 2, p. 190. doi: 10.1007/s13233-017-5017-9
      [3]
      G. Coste, C. Negrell, and S. Caillol, From gas release to foam synthesis, the second breath of blowing agents, Eur. Polym. J., 140(2020), art. No. 110029. doi: 10.1016/j.eurpolymj.2020.110029
      [4]
      J. Wu, A. Albouy, and D. Mouton, Evaluation of the next generation HFC blowing agents in rigid polyurethane foams, J. Cell. Plast., 35(1999), No. 5, p. 421. doi: 10.1177/0021955X9903500504
      [5]
      S.K. Wang, Z.K. Guo, X.H. Han, X.G. Xu, Q. Wang, S.M. Deng, and G.M. Chen, Experimental evaluation on low global warming potential HFO-1336mzz-Z as an alternative to HCFC-123 and HFC-245fa, J. Therm. Sci. Eng. Appl., 11(2019), No. 3, art. No. 031009. doi: 10.1115/1.4041881
      [6]
      S.A. Baser and D.V. Khakhar, Modeling of the dynamics of R-11 blown polyurethane foam formation, Polym. Eng. Sci., 34(1994), No. 8, p. 632. doi: 10.1002/pen.760340804
      [7]
      S.A. Baser and D.V. Khakhar, Modeling of the dynamics of water and R-11 blown polyurethane foam formation, Polym. Eng. Sci., 34(1994), No. 8, p. 642. doi: 10.1002/pen.760340805
      [8]
      H.H. Al-Moameri, G. Hassan, and B. Jaber, Simulation physical and chemical blowing agents for polyurethane foam production, IOP Conf. Ser.: Mater. Sci. Eng., 518(2019), No. 6, art. No. 062001. doi: 10.1088/1757-899X/518/6/062001
      [9]
      L. Shen, Y.S. Zhao, A. Tekeei, F.H. Hsieh, and G.J. Suppes, Density modeling of polyurethane box foam, Polym. Eng. Sci., 54(2014), No. 7, p. 1503. doi: 10.1002/pen.23694
      [10]
      A. Picard, R.S. Davis, M. Gläser, and K. Fujii, Revised formula for the density of moist air (CIPM-2007), Metrologia, 45(2008), No. 2, p. 149. doi: 10.1088/0026-1394/45/2/004
      [11]
      R.S. Davis, Equation for the determination of the density of moist air (1981/91), Metrologia, 29(1992), No. 1, p. 67. doi: 10.1088/0026-1394/29/1/008
      [12]
      P. Giacomo, Equation for the determination of the density of moist air (1981), Metrologia, 18(1982), No. 1, p. 33. doi: 10.1088/0026-1394/18/1/006
      [13]
      G.R. North, J. Pyle, and F.Q. Zhang, Encyclopedia of Atmospheric Sciences, 2nd ed., Elsevier, London, 2015.

    Catalog


    • /

      返回文章
      返回