Cite this article as: |
Xiaoyan Zhang, Tianrun Cao, Lang Liu, Baoyun Bu, Yaping Ke, and Qiangqiang Du, Experimental study on thermal and mechanical properties of tailings-based cemented paste backfill with CaCl2·6H2O/expanded vermiculite shape stabilized phase change materials, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 250-259. https://doi.org/10.1007/s12613-022-2503-7 |
刘浪 E-mail: liulang@xust.edu.cn
Supplementary Informations-IJM-11-2021-1128.doc |
[1] |
H.P. Xie, F. Gao, Y. Ju, et al., Quantitative definition and investigation of deep mining, J. China Coal Soc., 40(2015), No. 1, p. 1.
|
[2] |
H.Y. Cheng, A.X. Wu, S.C. Wu, et al., Research status and development trend of solid waste backfill in metal mines, Chin. J. Eng., 44(2022), No. 1, p. 11.
|
[3] |
Y. Dong, X.J. Liu, and H.L. Hou, Analysis of green mine evaluation index, China Min. Mag., 29(2020), No. 12, p. 68.
|
[4] |
L. Liu, J. Xin, B. Zhang, et al., Basic theories and applied exploration of functional backfill in mines, J. China Coal Soc., 43(2018), No. 7, p. 1811.
|
[5] |
X.C. Hu, J. Banks, L.P. Wu, and W.V. Liu, Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta, Renewable Energy, 148(2020), p. 1110. doi: 10.1016/j.renene.2019.09.141
|
[6] |
X.Y. Zhang, M. Zhao, L. Liu, et al., Numerical simulation on heat storage performance of backfill body based on tube-in-tube heat exchanger, Constr. Build. Mater., 265(2020), art. No. 120340. doi: 10.1016/j.conbuildmat.2020.120340
|
[7] |
D.V. Voronin, E. Ivanov, P. Gushchin, R. Fakhrullin, and V. Vinokurov, Clay composites for thermal energy storage: A review, Molecules, 25(2020), No. 7, art. No. 1504. doi: 10.3390/molecules25071504
|
[8] |
P.Z. Lv, C.Z. Liu, and Z.H. Rao, Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications, Renewable Sustainable Energy Rev., 68(2017), p. 707. doi: 10.1016/j.rser.2016.10.014
|
[9] |
Y. Deng, J.H. Li, T.T. Qian, W.M. Guan, and X. Wang, Polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials for thermal energy storage, Mater. Sci. Forum, 847(2016), p. 39. doi: 10.4028/www.scientific.net/MSF.847.39
|
[10] |
L.L. Fu, Q.H. Wang, R.D. Ye, X.M. Fang, and Z.G. Zhang, A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation, Renewable Energy, 114(2017), p. 733. doi: 10.1016/j.renene.2017.07.091
|
[11] |
W.B. Jia, C.M. Wang, T.J. Wang, Z.Y. Cai, and K. Chen, Preparation and performances of palmitic acid/diatomite form-stable composite phase change materials, Int. J. Energy Res., 44(2020), No. 6, p. 4298. doi: 10.1002/er.5197
|
[12] |
Y. Deng, J.H. Li, and H.E. Nian, Expanded vermiculite: A promising natural encapsulation material of LiNO3, NaNO3, and KNO3 phase change materials for medium-temperature thermal energy storage, Adv. Eng. Mater., 20(2018), No. 8, art. No. 1800135. doi: 10.1002/adem.201800135
|
[13] |
W.M. Jia, J.H. Ji, M.Y. Zhang, X.J. Zhang, H.M. Cheng, and H.M. Dong, Research and engineering application of high temperature and thermal damage prevention in deep mines, Coal Technol., 39(2020), No. 3, p. 88.
|
[14] |
M. Wang, L. Liu, B. Zhang, et al., Basic theory of cold load and storage functional backfill in mining, J. China Coal Soc., 45(2020), No. 4, p. 1336.
|
[15] |
Y.E. Milián, A. Gutiérrez, M. Grágeda, and S. Ushak, A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties, Renewable Sustainable Energy Rev., 73(2017), p. 983. doi: 10.1016/j.rser.2017.01.159
|
[16] |
J. Xin, L. Liu, L.H. Xu, J.Y. Wang, P. Yang, and H.S. Qu, A preliminary study of aeolian sand-cement-modified gasification slag-paste backfill: Fluidity, microstructure, and leaching risks, Sci. Total Environ., 830(2022), art. No. 154766. doi: 10.1016/j.scitotenv.2022.154766
|
[17] |
N. Zhou, C.W. Dong, J.X. Zhang, G.H. Meng, and Q.Q. Cheng, Influences of mine water on the properties of construction and demolition waste-based cemented paste backfill, Constr. Build. Mater., 313(2021), art. No. 125492. doi: 10.1016/j.conbuildmat.2021.125492
|
[18] |
N. Zhou, E.B. Du, J.X. Zhang, C.L. Zhu, and H.Q. Zhou, Mechanical properties improvement of sand-based cemented backfill body by adding glass fibers of different lengths and ratios, Constr. Build. Mater., 280(2021), art. No. 122408. doi: 10.1016/j.conbuildmat.2021.122408
|
[19] |
Z.W. Du, S.J. Chen, S. Wang, R. Liu, D.H. Yao, and H.S. Mitri, Influence of binder types and temperatures on the mechanical properties and microstructure of cemented paste backfill, Adv. Civ. Eng., 2021(2021), art. No. 6652176. doi: 10.1155/2021/6652176
|
[20] |
Y.Y. Tan, E. Davide, Y.C. Zhou, W.D. Song, and X. Meng, Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 140. doi: 10.1007/s12613-019-1878-6
|
[21] |
Q. Zhou, J.H. Liu, A.X. Wu, and H.J. Wang, Early-age strength property improvement and stability analysis of unclassified tailing paste backfill materials, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1191. doi: 10.1007/s12613-020-1977-4
|
[22] |
J. Wang, J.X. Fu, W.D. Song, Y.F. Zhang, and Y. Wang, Mechanical behavior, acoustic emission properties and damage evolution of cemented paste backfill considering structural feature, Constr. Build. Mater., 261(2020), art. No. 119958. doi: 10.1016/j.conbuildmat.2020.119958
|
[23] |
Y.L. Shen, S.L. Liu, C. Zeng, et al., Experimental thermal study of a new PCM-concrete thermal storage block (PCM-CTSB), Constr. Build. Mater., 293(2021), art. No. 123540. doi: 10.1016/j.conbuildmat.2021.123540
|
[24] |
M. Ren, X.D. Wen, X.J. Gao, and Y.S. Liu, Thermal and mechanical properties of ultra-high performance concrete incorporated with microencapsulated phase change material, Constr. Build. Mater., 273(2021), art. No. 121714. doi: 10.1016/j.conbuildmat.2020.121714
|
[25] |
X. Sun, W.Y. Liao, A. Kumar, K.H. Khayat, Z.H. Tian, and H.Y. Ma, Multi-level modeling of thermal behavior of phase change material incorporated lightweight aggregate and concrete, Cem. Concr. Compos., 122(2021), art. No. 104131. doi: 10.1016/j.cemconcomp.2021.104131
|
[26] |
A. Ilyas, M.Z. Ahad, M.A.Q.J. Durrani, and A. Naveed, Synthesis and characterization of PCM based insulated concrete for thermal energy storage, Mater. Res. Express, 8(2021), No. 7, art. No. 075503. doi: 10.1088/2053-1591/ac118a
|
[27] |
J. Chen, W.M. Zhang, X.J. Shi, C. Yao, and C.C. Kuai, Use of PEG/SiO2 phase change composite to control porous asphalt concrete temperature, Constr. Build. Mater., 245(2020), art. No. 118459. doi: 10.1016/j.conbuildmat.2020.118459
|
[28] |
A.L. Brooks, Y. Fang, Z.L. Shen, J.L. Wang, and H.Y. Zhou, Enabling high-strength cement-based materials for thermal energy storage via fly-ash cenosphere encapsulated phase change materials, Cem. Concr. Compos., 120(2021), art. No. 104033. doi: 10.1016/j.cemconcomp.2021.104033
|
[29] |
E. Mohseni, W. Tang, K.H. Khayat, and H.Z. Cui, Thermal performance and corrosion resistance of structural-functional concrete made with inorganic PCM, Constr. Build. Mater., 249(2020), art. No. 118768. doi: 10.1016/j.conbuildmat.2020.118768
|
[30] |
L. Zhu, F.N. Dang, Y. Xue, K. Jiao, and W.H. Ding, Multivariate analysis of effects of microencapsulated phase change materials on mechanical behaviors in light-weight aggregate concrete, J. Build. Eng., 42(2021), art. No. 102783. doi: 10.1016/j.jobe.2021.102783
|
[31] |
X.Y. Zhang, M.Y. Xu, L. Liu, et al., Experimental study on thermal and mechanical properties of cemented paste backfill with phase change material, J. Mater. Res. Technol., 9(2020), No. 2, p. 2164. doi: 10.1016/j.jmrt.2019.12.047
|
[32] |
X.G. Zhang, J.X. Qiao, W.Y. Zhang, et al., Thermal behavior of composite phase change materials based on polyethylene glycol and expanded vermiculite with modified porous carbon layer, J. Mater. Sci., 53(2018), No. 18, p. 13067. doi: 10.1007/s10853-018-2531-x
|
[33] |
B.W. Xu, H.Y. Ma, Z.Y. Lu, and Z.J. Li, Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites, Appl. Energy, 160(2015), p. 358. doi: 10.1016/j.apenergy.2015.09.069
|
[34] |
C. Chen, H.S. Ling, N. Yu, N. Li, M.X. Zhang, and Y. Li, Calculation method of heat storage coefficient of phase change material, Acta Energiae Solaris Sin., 39(2018), No. 8, p. 2267.
|
[35] |
L. Liu, P. Yang, C.C. Qi, B. Zhang, L.J. Guo, and K.I. Song, An experimental study on the early-age hydration kinetics of cemented paste backfill, Constr. Build. Mater., 212(2019), p. 283. doi: 10.1016/j.conbuildmat.2019.03.322
|
[36] |
H.W. Min, S. Kim, and H.S. Kim, Investigation on thermal and mechanical characteristics of concrete mixed with shape stabilized phase change material for mix design, Constr. Build. Mater., 149(2017), p. 749. doi: 10.1016/j.conbuildmat.2017.05.176
|
[37] |
X. Liu, J.H. Wu, T. Xian, and Y. Feng, Preparation and properties of CaCl2·6H2O/expanded graphite composite phase change materials, J. Zhejiang Univ. (Eng. Sci.)
|
[38] |
A.B. Jin, Y. Ju, H. Sun, et al., Strength and thermal performance of phase change energy storage backfill, J. Harbin Inst. Technol., 54(2022), No. 2, p. 81.
|
[39] |
X.M. Zhang, T. Zhu, Q.S. An, Z.P. Ren, and F.M. Mei, Heat Transfer, 6th ed., China Architecture & Building Press, Beijing, 2014, p. 13.
|
[40] |
H. Yang, W.H. Chen, X.F. Kong, and X. Rong, Fabrication, property characterization and thermal performance of composite phase change material plates based on tetradecanol-myristic acid binary eutectic mixture/expanded perlite and expanded vermiculite for building application, J. Cent. South Univ., 26(2019), No. 9, p. 2578. doi: 10.1007/s11771-019-4196-2
|
[41] |
S.G. Jeong, S.J. Chang, S. Wi, et al., Energy efficient concrete with n-octadecane/xGnP SSPCM for energy conservation in infrastructure, Constr. Build. Mater., 106(2016), p. 543. doi: 10.1016/j.conbuildmat.2015.12.114
|
[42] |
N. Li, S.W. Lv, W. Wang, J. Guo, P. Jiang, and Y. Liu, Experimental investigations on the mechanical behavior of iron tailings powder with compound admixture of cement and nano-clay, Constr. Build. Mater., 254(2020), art. No. 119259. doi: 10.1016/j.conbuildmat.2020.119259
|
[43] |
L. Cui and M. Fall, Mechanical and thermal properties of cemented tailings materials at early ages: Influence of initial temperature, curing stress and drainage conditions, Constr. Build. Mater., 125(2016), p. 553. doi: 10.1016/j.conbuildmat.2016.08.080
|
[44] |
W.X. Wu, W. Wu, and S.F. Wang, Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications, Appl. Energy, 236(2019), p. 10. doi: 10.1016/j.apenergy.2018.11.071
|
[45] |
A. Adesina, P.O. Awoyera, A. Sivakrishna, K.R. Kumar, and R. Gobinath, Phase change materials in concrete: An overview of properties, Mater. Today Proc., 27(2020), p. 391. doi: 10.1016/j.matpr.2019.11.228
|
[46] |
Y. Yang, A.H. Wu, and L.H. Yang, Experimental study on the properties of unclassified tailing paste, Metal Mine, 45(2016), No. 8, p. 185.
|
[47] |
S.H. Yin, A.X. Wu, K.J. Hu, Y. Wang, and Y.K. Zhang, The effect of solid components on the rheological and mechanical properties of cemented paste backfill, Miner. Eng., 35(2012), p. 61. doi: 10.1016/j.mineng.2012.04.008
|
[48] |
B. Zhang, P.Y. Xue, L. Liu, et al., Exploration on the method of ore deposit–geothermal energy synergetic mining in deep backfill mines, J. China Coal Soc., 46(2021), No. 9, p. 2824.
|