留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 2
Feb.  2023

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  615
  • HTML全文浏览量:  232
  • PDF下载量:  42
  • 被引次数: 0
Chen Chen, Jingwei Li, Qiuxia Zuo, Boyuan Ban, and Jian Chen, Simultaneously removal of P and B from Si by Sr and Zr co-addition during Al–Si low-temperature solvent refining, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 365-377. https://doi.org/10.1007/s12613-022-2504-6
Cite this article as:
Chen Chen, Jingwei Li, Qiuxia Zuo, Boyuan Ban, and Jian Chen, Simultaneously removal of P and B from Si by Sr and Zr co-addition during Al–Si low-temperature solvent refining, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 365-377. https://doi.org/10.1007/s12613-022-2504-6
引用本文 PDF XML SpringerLink
研究论文

Sr和Zr共掺的Al-Si低温溶剂精炼体系下同步去除Si中P和B

  • 通讯作者:

    班伯源    E-mail: jchen@ipp.ac.cn

    陈健    E-mail: jchen@ipp.ac.cn

文章亮点

  • (1) 采用四元合金体系同步并有效地去除了Si中的P和B
  • (2) 提纯Si中P和B的最佳去除率分别达到了98.4%和96.1%
  • (3) 建立了杂质相与初晶Si相互作用的演化模型
  • 目前大多数的合金法研究都是添加一种过渡族金属元素到熔炼体系中来达到有效去除Si中B、P的目的。但事实上,冶金硅中存在的非金属杂质元素通常是B、P共存。因此,同时高效的去除Si中B、P技术明显更适合于实际生产应用。为了同步高效去除初晶Si中的关键杂质元素P和B,我们首先采用Zr和Sr作为Al-Si凝固精炼过程中的B和P捕获剂元素。在Al-Si-Zr-Sr体系中,Al-Si合金中Zr和Sr的加入可以在熔体中析出ZrB2相和含P的Al2Si2Sr相。在Al-Si-Sr-Zr体系中,初晶Si中P和B的去除率分别在84.8% ~ 98.4%和90.7% ~ 96.7%范围内。其中Sr-32000+Zr-3000 (μg·kg-1)试样条件的去除效果最好,初晶Si中P和B的去除率分别达到了98.4%和96.1%。通过Al–Si–Zr–Sr体系和Al–Si–(Zr或Sr)体系的对比研究,Sr和Zr共掺对P和B的去除效果没有明显的下降趋势,说明含B/P杂质相的成核和生长是相互独立的。最后,我们建立了Sr/Zr析出相在熔体中形核和生长过程的演化模型,并揭示了杂质相与初晶Si之间的相互作用。
  • Research Article

    Simultaneously removal of P and B from Si by Sr and Zr co-addition during Al–Si low-temperature solvent refining

    + Author Affiliations
    • To remove the key impurity elements, P and B, from primary Si simultaneously, Sr and Zr co-addition to Al–Si alloy systems during solvent refining has been investigated. Sr reacts with Al, Si, and P in the melt to form a P-containing Al2Si2Sr phase and Zr reacts with B to form a ZrB2 phase. In the Al–Si–Sr–Zr system, high removal fractions of P and B in the primary Si, with 84.8%–98.4% and 90.7%–96.7%, respectively, are achieved at the same time, respectively. The best removal effect is obtained in the sample with the addition of Sr-32000+Zr-3000 μg·kg–1, and the removal fractions of P and B in the purified Si reach 98.4% and 96.1%. Compared with the Sr/Zr single-addition, the removal effects of Sr and Zr co-addition on P and B do not show a significant downward trend, indicating that the nucleation and growth of the B/P-containing impurity phases are mutually independent. Finally, an evolution model is proposed to describe the nucleation and the growth stages of Sr/Zr-containing compound phases, which reveals the interaction between the impurity phases and the primary Si.
    • loading
    • Supplementary Informations-IJM-02-2022-0172.docx
    • [1]
      T. Yoshikawa and K. Morita, An evolving method for solar-grade silicon production: Solvent refining, JOM, 64(2012), No. 8, p. 946. doi: 10.1007/s11837-012-0371-8
      [2]
      Y.Q. Li, W. Chen, J. Lu, X.H. Lei, and L.F. Zhang, Boron removal from metallurgical-grade silicon by slag refining and gas blowing techniques: Experiments and simulations, J. Electron. Mater., 50(2021), No. 3, p. 1386. doi: 10.1007/s11664-020-08651-4
      [3]
      Y.S. Ren, H.P. Wang, and K. Morita, Effect of Zr addition on B-removal behaviour during solidification purification of Si with Si–Sn solvent, Vacuum, 167(2019), p. 319. doi: 10.1016/j.vacuum.2019.06.029
      [4]
      S. Shi, P.T. Li, D.C. Jiang, Y. Tan, X. Li, J.X. Yang, L. Zhang, F. Wang, J.Y. Li, and H. M. Asghar, Asghar, Kinetics of evaporation under vacuum in preparation of solar-grade silicon by electron beam melting, Mater. Sci. Semicond. Process., 96(2019), p. 53. doi: 10.1016/j.mssp.2019.02.015
      [5]
      X. Gu, X.G. Yu, and D.R. Yang, Low-cost solar grade silicon purification process with Al–Si system using a powder metallurgy technique, Sep. Purif. Technol., 77(2011), No. 1, p. 33. doi: 10.1016/j.seppur.2010.11.016
      [6]
      B.Y. Ban, Y.L. Li, Q.X. Zuo, T.T. Zhang, J. Chen, and S.Y. Dai, Refining of metallurgical grade Si by solidification of Al–Si melt under electromagnetic stirring, J. Mater. Process. Technol., 222(2015), p. 142. doi: 10.1016/j.jmatprotec.2015.03.012
      [7]
      T. Yoshikawa and K. Morita, Removal of B from Si by solidification refining with Si–Al melts, Metall. Mater. Trans. B, 36(2005), No. 6, p. 731. doi: 10.1007/s11663-005-0076-2
      [8]
      W.Z. Yu, Y. Xue, J. Mei, X.Z. Zhou, M.L. Xiong, and S.F. Zhang, Segregation and removal of transition metal impurities during the directional solidification refining of silicon with Al–Si solvent, J. Alloys Compd., 805(2019), p. 198. doi: 10.1016/j.jallcom.2019.07.089
      [9]
      F.A. Trumbore, Solid solubilities of impurity elements in germanium and silicon, Bell Syst. Tech. J., 39(1960), No. 1, p. 205. doi: 10.1002/j.1538-7305.1960.tb03928.x
      [10]
      H.X. Lai, Z.L. Sheng, J.T. Li, P.F. Xing, and X.T. Luo, Enhanced separation of phosphorus from metallurgical grade silicon by CaAl2Si2 phase reconstruction, Sep. Purif. Technol., 191(2018), p. 257. doi: 10.1016/j.seppur.2017.09.034
      [11]
      L.Q. Huang, A. Danaei, S. Thomas, P.F. Xing, J.T. Li, X.T. Luo, and M. Barati, Solvent extraction of phosphorus from Si–Cu refining system with calcium addition, Sep. Purif. Technol., 204(2018), p. 205. doi: 10.1016/j.seppur.2018.04.087
      [12]
      L. Hu, Z. Wang, X.Z. Gong, Z.C. Guo, and H. Zhang, Purification of metallurgical-grade silicon by Sn–Si refining system with calcium addition, Sep. Purif. Technol., 118(2013), p. 699. doi: 10.1016/j.seppur.2013.08.013
      [13]
      M.Y. Zhu, S.Y. Yue, G.X. Wu, K. Tang, Y.J. Xu, and J. Safarian, P removal from Si by Si–Ca–Al alloying-leaching refining: Effect of Al and the CaAl2Si2 phase, Sep. Purif. Technol., 271(2021), art. No. 118675. doi: 10.1016/j.seppur.2021.118675
      [14]
      L.Y. Sun, Z. Wang, H. Chen, D. Wang, and G.Y. Qian, Removal of phosphorus in silicon by the formation of CaAl2Si2 phase at the solidification interface, Metall. Mater. Trans. B, 48(2017), No. 1, p. 420. doi: 10.1007/s11663-016-0848-x
      [15]
      S.M. Kauzlarich, C.L. Condron, J.K. Wassei, T. Ikeda, and G.J. Snyder, Structure and high-temperature thermoelectric properties of SrAl2Si2, J. Solid State Chem., 182(2009), No. 2, p. 240. doi: 10.1016/j.jssc.2008.09.028
      [16]
      J. Rakhmonov, G. Timelli, and G. Basso, Interaction of Ca, P trace elements and Sr modification in AlSi5Cu1Mg alloys, J. Therm. Anal. Calorim., 133(2018), No. 1, p. 123. doi: 10.1007/s10973-018-7111-4
      [17]
      Y.H. Cho, H.C. Lee, K.H. Oh, and A.K. Dahle, Effect of strontium and phosphorus on eutectic Al–Si nucleation and formation of β-Al5FeSi in hypoeutectic Al–Si foundry alloys, Metall. Mater. Trans. A, 39(2008), No. 10, p. 2435. doi: 10.1007/s11661-008-9580-8
      [18]
      Y. Lei, W.H. Ma, L.E. Sun, Y.N. Dai, and K. Morita, B removal by Zr addition in electromagnetic solidification refinement of Si with Si–Al melt, Metall. Mater. Trans. B, 47(2016), No. 1, p. 27. doi: 10.1007/s11663-015-0506-8
      [19]
      T. Yoshikawa, K. Arimura, and K. Morita, Boron removal by titanium addition in solidification refining of silicon with Si–Al melt, Metall. Mater. Trans. B, 36(2005), No. 6, p. 837. doi: 10.1007/s11663-005-0085-1
      [20]
      Y.S. Ren and K. Morita, Low-temperature process for the fabrication of low-boron content bulk Si from Si–Cu solution with Zr addition, ACS Sustain. Chem. Eng., 8(2020), No. 17, p. 6853. doi: 10.1021/acssuschemeng.0c01785
      [21]
      Y. Lei, W.H. Ma, J.J. Wu, K.X. Wei, G.Q. Lv, and S.T. Li, Purification of metallurgical-grade silicon using Si–Sn alloy in presence of Hf, Zr, or Ti, Mater. Sci. Semicond. Process., 88(2018), p. 97. doi: 10.1016/j.mssp.2018.07.039
      [22]
      H. Sakiani, S.H. Tabaian, and J. Chen, Effect of calcium addition on the silicon purification in the presence of low concentration of iron, J. Alloys Compd., 830(2020), art. No. 154112. doi: 10.1016/j.jallcom.2020.154112
      [23]
      H. Sakiani, S.H. Tabaian, J. Chen, J.W. Li, and B.Y. Ban, Investigating boron and phosphorus removal from silicon by Si–Ti and Si–Ti–Fe alloying systems, Sep. Purif. Technol., 250(2020), art. No. 117227. doi: 10.1016/j.seppur.2020.117227
      [24]
      X.L. Bai, B.Y. Ban, J.W. Li, Z.Q. Fu, Z.J. Peng, C.B. Wang, and J. Chen, Effect of Ti addition on B removal during silicon refining in Al–30%Si alloy directional solidification, Sep. Purif. Technol., 174(2017), p. 345. doi: 10.1016/j.seppur.2016.11.002
      [25]
      X.L. Bai, B.Y. Ban, J.W. Li, Z.J. Peng, and J. Chen, Distribution behavior of B and P during Al–Si melt directional solidification with open-ended crucible, High Temp. Mater. Process., 37(2018), No. 3, p. 201. doi: 10.1515/htmp-2016-0127
      [26]
      Y.L. Li, B.Y. Ban, J.W. Li, T.T. Zhang, X.L. Bai, J. Chen, and S.Y. Dai, Effect of cooling rate on phosphorus removal during Al–Si solvent refining, Metall. Mater. Trans. B, 46(2015), No. 2, p. 542. doi: 10.1007/s11663-015-0291-4
      [27]
      F. Chigondo, From metallurgical-grade to solar-grade silicon: An overview, Silicon, 10(2018), No. 3, p. 789. doi: 10.1007/s12633-016-9532-7
      [28]
      C. Chen, J.W. Li, X.S. Jiang, W.F. Song, J. Shi, B.Y. Ban, and J. Chen, Effect of impurity phase migration on Al–30wt.%Si solvent refining with Zr additions during directional solidification, Sep. Purif. Technol., 278(2021), art. No. 119572. doi: 10.1016/j.seppur.2021.119572
      [29]
      V.N. Lozovskii and V.P. Popov, Temperature gradient zone melting, Prog. Cryst. Growth Charact., 6(1983), No. 1, p. 1. doi: 10.1016/0146-3535(83)90022-9
      [30]
      C. Chen, B.Y. Ban, J.F. Sun, J.W. Li, X.S. Jiang, J. Shi, and J. Chen, Mechanism of boron removal of primary Si phases and morphology evolution of impurity phases during slow cooling solidification refining of Al–30wt.%Si alloy with Zr additions, J. Alloys Compd., 860(2021), art. No. 158517. doi: 10.1016/j.jallcom.2020.158517
      [31]
      K. Kobayashi, P.H. Shingu, and R. Ozaki, Crystal growth of the primary silicon in an Al–16wt%Si alloy, J. Mater. Sci., 10(1975), No. 2, p. 290. doi: 10.1007/BF00540353
      [32]
      W.Z. Yu, W.H. Ma, G.Q. Lü, Y.S. Ren, H.Y. Xue, and Y.N. Dai, Si purification by enrichment of primary Si in Al–Si melt, Trans. Nonferrous Met. Soc. China, 23(2013), No. 11, p. 3476. doi: 10.1016/S1003-6326(13)62891-5
      [33]
      D. Liang, Y. Bayraktar, and H. Jones, Formation and segregation of primary silicon in Bridgman solidified Al–18.3wt% Si alloy, Acta Metall. Mater., 43(1995), No. 2, p. 579. doi: 10.1016/0956-7151(94)00287-R
      [34]
      F.W. Glaser and B. Post, System zirconium–boron, JOM, 5(1953), No. 9, p. 1117. doi: 10.1007/BF03397597
      [35]
      P.J. Goodhew, J. Humphreys, and R. Beanland, Electron Microscopy and Analysis, Third edition Ed., Taylor & Francis, London and New York, 2001, p. 254.
      [36]
      W. Yi, J.B. Gao, Y. Tang, and L.J. Zhang, Thermodynamic descriptions of ternary Al–Si–Sr system supported by key experiments, Calphad, 68(2020), art. No. 101732. doi: 10.1016/j.calphad.2019.101732
      [37]
      T. Yoshikawa and K. Morita, Refining of silicon during its solidification from a Si–Al melt, J. Cryst. Growth, 311(2009), No. 3, p. 776. doi: 10.1016/j.jcrysgro.2008.09.095
      [38]
      H.M. Chen, F. Zheng, H.S. Liu, L.B. Liu, and Z.P. Jin, Thermodynamic assessment of B–Zr and Si–Zr binary systems, J. Alloys Compd., 468(2009), No. 1-2, p. 209. doi: 10.1016/j.jallcom.2008.01.061
      [39]
      H. Li, L.T. Zhang, Q.F. Zeng, J.J. Wang, L.F. Cheng, H.T. Ren, and G. Kang, Crystal structure and elastic properties of ZrB compared with ZrB2: A first-principles study, Comput. Mater. Sci., 49(2010), No. 4, p. 814. doi: 10.1016/j.commatsci.2010.06.027
      [40]
      G.M. Zatorska, G.S. Dmytriv, V.V. Pavlyuk, E. Bartoszak-Adamska, and M. Jaskólski, Crystal structure of the new intermetallic compound Zr2−xLix+ySi1−y (x = 0.17, y = 0.12) and its relation with the disilicide ZrSi2, J. Alloys Compd., 346(2002), No. 1-2, p. 154. doi: 10.1016/S0925-8388(02)00493-0
      [41]
      W.Z. Yu, W.H. Ma, Z. Zheng, W.Y. Jiang, J. Li, and M.H. Tian, Effects of melt viscosity on enrichment and separation of primary silicon from Al–Si melt, Trans. Nonferrous Met. Soc. China, 27(2017), No. 2, p. 467. doi: 10.1016/S1003-6326(17)60053-0
      [42]
      J.C. Jie, Q.C. Zou, J.L. Sun, Y.P. Lu, T.M. Wang, and T.J. Li, Separation mechanism of the primary Si phase from the hypereutectic Al–Si alloy using a rotating magnetic field during solidification, Acta Mater., 72(2014), p. 57. doi: 10.1016/j.actamat.2014.03.031

    Catalog


    • /

      返回文章
      返回