留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 2
Feb.  2023

图(12)  / 表(6)

数据统计

分享

计量
  • 文章访问数:  1527
  • HTML全文浏览量:  601
  • PDF下载量:  101
  • 被引次数: 0
Runpeng Liao, Shuming Wen, Qicheng Feng, Jiushuai Deng, and Hao Lai, Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 271-282. https://doi.org/10.1007/s12613-022-2505-5
Cite this article as:
Runpeng Liao, Shuming Wen, Qicheng Feng, Jiushuai Deng, and Hao Lai, Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 271-282. https://doi.org/10.1007/s12613-022-2505-5
引用本文 PDF XML SpringerLink
研究论文

草酸铵对石灰体系中受抑黄铁矿和毒砂的选择性活化机理研究

  • 通讯作者:

    丰奇成    E-mail: fqckmust@163.com

    邓久帅    E-mail: dengshuai689@163.com

文章亮点

  • (1) 系统研究了草酸铵对石灰体系受抑黄铁矿和毒砂浮选分离的影响。
  • (2) 石灰体系受抑黄铁矿经草酸铵作用后其疏水性和可浮性显著提高。
  • (3) 进一步探明了石灰体系中受抑黄铁矿和毒砂表面的亲水性物质组成。
  • (4) 深入研究了草酸铵对石灰体系中受抑黄铁矿的活化机理。
  • 在多金属硫化矿的浮选过程中,通常使用大量石灰将黄铁矿和毒砂抑制到尾矿中,而要实现受抑黄铁矿和毒砂的浮选分离,首先需要进行活化。硫酸是目前应用最广泛的选硫活化剂,但其存在诸多弊端,所以研究开发新型绿色环保选硫活化剂,实现受抑黄铁矿和毒砂的高效分离显得尤为必要。本文旨在开发利用草酸铵作为受抑黄铁矿和毒砂浮选分离的选择性活化剂。本文以受抑黄铁矿和毒砂纯矿物及广西华锡集团多金属硫化矿含硫含砷尾矿为研究对象,以草酸铵为活化剂,乙基黄药为捕收剂,较好实现了黄铁矿和毒砂的浮选分离。通过接触角试验研究了草酸铵对黄铁矿和毒砂表面疏水性的影响,受抑黄铁矿经草酸铵和乙基黄药处理后,其表面疏水性显著增加,接触角从66.62°增加到75.15°,然后增加到81.21°,而受抑毒砂经草酸铵和乙基黄药处理后其表面疏水性并无显著变化。紫外分光光度计检测结果表明,不同浓度的草酸铵处理后,乙基黄药在黄铁矿表面的吸附量显著增加。Zeta电位测量表明,经草酸铵活化后,黄铁矿表面的Zeta电位因添加乙基黄药而变的更负。X射线光电子能谱测试表明,经过草酸铵处理后,受抑黄铁矿表面的O 1s含量从44.03%下降到26.18%,S 2p含量从14.01%上升到27.26%,而受抑毒砂表面S 2p含量无显著变化,这证实了草酸铵对受抑黄铁矿的活化性能显著优于受抑毒砂。因此,草酸铵可作为石灰体系中受抑黄铁矿的选择性活化剂,实现黄铁矿和毒砂的高效浮选分离。
  • Research Article

    Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite

    + Author Affiliations
    • The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work. Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca2+ system, whereas arsenopyrite was almost unaffected. In mineral mixtures tests, the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%. After ammonium oxalate and ethyl xanthate treatment, the hydrophobicity of pyrite increased significantly, and the contact angle increased from 66.62° to 75.15° and then to 81.21°. After ammonium oxalate treatment, the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface. Zeta potential measurements showed that after activation by ammonium oxalate, there was a shift in the zeta potential of pyrite to more negative values by adding xanthate. X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment, the O 1s content on the surface of pyrite decreased from 44.03% to 26.18%, and the S 2p content increased from 14.01% to 27.26%, which confirmed that the ammonium oxalate-treated pyrite surface was more hydrophobic than the untreated surface. Therefore, ammonium oxalate may be used as a selective activator of pyrite in the lime system, which achieves an efficient flotation separation of S–As sulfide ores under high alkalinity and high Ca2+ concentration conditions.
    • loading
    • [1]
      B. Fletcher, W. Chimonyo, and Y.J. Peng, A comparison of native starch, oxidized starch and CMC as copper-activated pyrite depressants, Miner. Eng., 156(2020), art. No. 106532. doi: 10.1016/j.mineng.2020.106532
      [2]
      X.F. Zheng, S.T. Cao, Z.Y. Nie, et al., Impact of mechanical activation on bioleaching of pyrite: A DFT study, Miner. Eng., 148(2020), art. No. 106209. doi: 10.1016/j.mineng.2020.106209
      [3]
      P.M. Ferreira, D. Majuste, E.T.F. Freitas, et al., Galvanic effect of pyrite on arsenic release from arsenopyrite dissolution in oxygen-depleted and oxygen-saturated circumneutral solutions, J. Hazard. Mater., 412(2021), art. No. 125236. doi: 10.1016/j.jhazmat.2021.125236
      [4]
      M. Zanin, H. Lambert, and C.A. du Plessis, Lime use and functionality in sulphide mineral flotation: A review, Miner. Eng., 143(2019), art. No. 105922. doi: 10.1016/j.mineng.2019.105922
      [5]
      X.H. Wang and K.S. Eric Forssberg, Mechanisms of pyrite flotation with xanthates, Int. J. Miner. Process., 33(1991), No. 1-4, p. 275. doi: 10.1016/0301-7516(91)90058-Q
      [6]
      A.S. Stepanov, R.R. Large, E.S. Kiseeva, et al., Phase relations of arsenian pyrite and arsenopyrite, Ore Geol. Rev., 136(2021), art. No. 104285. doi: 10.1016/j.oregeorev.2021.104285
      [7]
      A.M. Buswell, D.J. Bradshaw, P.J. Harris, and Z. Ekmekci, The use of electrochemical measurements in the flotation of a platinum group minerals (PGM) bearing ore, Miner. Eng., 15(2002), No. 6, p. 395. doi: 10.1016/S0892-6875(02)00061-4
      [8]
      Y.H. Hu, S.L. Zhang, and G.Z. Qiu, Surface chemistry of activation of lime-depressed pyrite in flotation, Trans. Nonferrous Met. Soc. China, 10(2000), No. 6, p. 798.
      [9]
      S. Dzhamyarov, I. Grigorova, M. Ranchev, and I. Nishkov, Ammomiacal activation of lime depressed pyritea, [in] Proc. of XXIX International Mineral Processing Congress, Moscow, 2018.
      [10]
      R. Murphy and D.R. Strongin, Surface reactivity of pyrite and related sulfides, Surf. Sci. Rep., 64(2009), No. 1, p. 1. doi: 10.1016/j.surfrep.2008.09.002
      [11]
      O. Kenji, T. Tsunehiko, and S. Kozo, Effect on some ammonium salts on the flotation of iron sulphide minerals, Science Reports of the Research Institutes, Tohoku University. Ser. A, Physics, Chemistry and Metallurgy, 12(1960), p. 62.
      [12]
      X. Xiaojun and Ş. Kelebek, Activation of xanthate flotation of pyrite by ammonium salts following it’s depression by lime, Dev. Miner. Process., 13(2000), p. C8b.
      [13]
      Q. Zhang, S.M. Wen, Q.C. Feng, and H. Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1150. doi: 10.1007/s12613-021-2379-y
      [14]
      X. Chen, G.H. Gu, and Z.X. Chen, Seaweed glue as a novel polymer depressant for the selective separation of chalcopyrite and galena, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1495. doi: 10.1007/s12613-019-1848-z
      [15]
      C. Han, D.Z. Wei, S.L. Gao, et al., Adsorption and desorption of butyl xanthate on chalcopyrite, J. Mater. Res. Technol., 9(2020), No. 6, p. 12654. doi: 10.1016/j.jmrt.2020.09.021
      [16]
      S.A. Khoso, Y.H. Hu, F. Lü, et al., Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite, Trans. Nonferrous Met. Soc. China, 29(2019), No. 12, p. 2604. doi: 10.1016/S1003-6326(19)65167-8
      [17]
      Y.F. Fu, W.Z. Yin, X.S. Dong, et al., New insights into the flotation responses of brucite and serpentine for different conditioning times: Surface dissolution behavior, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1898. doi: 10.1007/s12613-020-2158-1
      [18]
      W.J. Zhao, M.L. Wang, B. Yang, Q.C. Feng, and D.W. Liu, Enhanced sulfidization flotation mechanism of smithsonite in the synergistic activation system of copper–ammonium species, Miner. Eng., 187(2022), art. No. 107796. doi: 10.1016/j.mineng.2022.107796
      [19]
      S.R. Rao and J.A. Finch, A review of water re-use in flotation, Miner. Eng., 2(1989), No. 1, p. 65. doi: 10.1016/0892-6875(89)90066-6
      [20]
      R.S. Multani, H. Williams, B. Johnson, R.H. Li, and K.E. Waters, The effect of superstructure on the zeta potential, xanthate adsorption, and flotation response of pyrrhotite, Colloids Surf. A Physicochem. Eng. Aspects, 551(2018), p. 108. doi: 10.1016/j.colsurfa.2018.04.057
      [21]
      P. Galicia, N. Batina, and I. González, The relationship between the surface composition and electrical properties of corrosion films formed on carbon steel in alkaline sour medium: An XPS and EIS study, J. Phys. Chem. B, 110(2006), No. 29, p. 14398. doi: 10.1021/jp061921k
      [22]
      A.P. Grosvenor, B.A. Kobe, and N.S. McIntyre, Studies of the oxidation of iron by water vapour using X-ray photoelectron spectroscopy and QUASES™, Surf. Sci., 572(2004), No. 2-3, p. 217. doi: 10.1016/j.susc.2004.08.035
      [23]
      C.F. Jones, S. LeCount, R.S.C. Smart, and T.J. White, Compositional and structural alteration of pyrrhotite surfaces in solution: XPS and XRD studies, Appl. Surf. Sci., 55(1992), No. 1, p. 65. doi: 10.1016/0169-4332(92)90382-8
      [24]
      N.S. McIntyre and D.G. Zetaruk, X-ray photoelectron spectroscopic studies of iron oxides, Anal. Chem., 49(1977), No. 11, p. 1521. doi: 10.1021/ac50019a016
      [25]
      H. Chen, Z.L. Zhang, Z.L. Yang, et al., Heterogeneous fenton-like catalytic degradation of 2, 4-dichlorophenoxyacetic acid in water with FeS, Chem. Eng. J., 273(2015), p. 481. doi: 10.1016/j.cej.2015.03.079
      [26]
      M. Kartal, F. Xia, D. Ralph, et al., Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation, Hydrometallurgy, 191(2020), art. No. 105192. doi: 10.1016/j.hydromet.2019.105192
      [27]
      B. Feng, L.Z. Zhang, W.P. Zhang, H.H. Wang, and Z.Y. Gao, Mechanism of calcium lignosulfonate in apatite and dolomite flotation system, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1697. doi: 10.1007/s12613-021-2313-3
      [28]
      P. Li, J.Y. Lin, K.L. Tan, and J.Y. Lee, Electrochemical impedance and X-ray photoelectron spectroscopic studies of the inhibition of mild steel corrosion in acids by cyclohexylamine, Electrochim. Acta, 42(1997), No. 4, p. 605. doi: 10.1016/S0013-4686(96)00205-8
      [29]
      R.S.C. Smart, W.M. Skinner, and A.R. Gerson, XPS of sulphide mineral surfaces: Metal-deficient, polysulphides, defects and elemental sulphur, Surf. Interface Anal., 28(1999), No. 1, p. 101. doi: 10.1002/(SICI)1096-9918(199908)28:1<101::AID-SIA627>3.0.CO;2-0
      [30]
      R.P. Liao, Q.C. Feng, S.M. Wen, and J. Liu, Flotation separation of molybdenite from chalcopyrite using ferrate(VI) as selective depressant in the absence of a collector, Miner. Eng., 152(2020), art. No. 106369. doi: 10.1016/j.mineng.2020.106369
      [31]
      M. Mullet, S. Boursiquot, M. Abdelmoula, J.M. Génin, and J.J. Ehrhardt, Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron, Geochim. Cosmochim. Acta, 66(2002), No. 5, p. 829. doi: 10.1016/S0016-7037(01)00805-5
      [32]
      H.W. Nesbitt, G.M. Bancroft, A.R. Pratt, and M.J. Scaini, Sulfur and iron surface states on fractured pyrite surfaces, Am. Mineral., 83(1998), No. 9-10, p. 1067. doi: 10.2138/am-1998-9-1015
      [33]
      P. Forson, M. Zanin, W. Skinner, and R. Asamoah, Differential flotation of pyrite and arsenopyrite: Effect of hydrogen peroxide and collector type, Miner. Eng., 163(2021), art. No. 106808. doi: 10.1016/j.mineng.2021.106808
      [34]
      H. Gholami, B. Rezai, A. Hassanzadeh, A. Mehdilo, and M. Yarahmadi, Effect of microwave pretreatment on grinding and flotation kinetics of copper complex ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1887. doi: 10.1007/s12613-020-2106-0
      [35]
      Y.L. Mikhlin, A.S. Romanchenko, and I.P. Asanov, Oxidation of arsenopyrite and deposition of gold on the oxidized surfaces: A scanning probe microscopy, tunneling spectroscopy and XPS study, Geochim. Cosmochim. Acta, 70(2006), No. 19, p. 4874. doi: 10.1016/j.gca.2006.07.021
      [36]
      C.L. Corkhill, P.L. Wincott, J.R. Lloyd, and D.J. Vaughan, The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by leptospirillum ferrooxidans, Geochim. Cosmochim. Acta, 72(2008), No. 23, p. 5616. doi: 10.1016/j.gca.2008.09.008
      [37]
      H.W. Nesbitt, I.J. Muir, and A.R. Prarr, Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation, Geochim. Cosmochim. Acta, 59(1995), No. 9, p. 1773. doi: 10.1016/0016-7037(95)00081-A
      [38]
      H.W. Nesbitt and I.J. Muir, Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air, Mineral. Petrol., 62(1998), No. 1-2, p. 123. doi: 10.1007/BF01173766
      [39]
      M.C. Costa, A.M. Botelho do Rego, and L.M. Abrantes, Characterization of a natural and an electro-oxidized arsenopyrite: A study on electrochemical and X-ray photoelectron spectroscopy, Int. J. Miner. Process., 65(2002), No. 2, p. 83. doi: 10.1016/S0301-7516(01)00059-X
      [40]
      F.J. Grunthaner, P.J. Grunthaner, R.P. Vasquez, B.F. Lewis, J. Maserjian, and A. Madhukar, Local atomic and electronic structure of oxide/GaAs and SiO2/Si interfaces using high-resolution XPS, J. Vac. Sci. Technol., 16(1979), No. 5, p. 1443. doi: 10.1116/1.570218
      [41]
      Y. Du, Q. Lu, H.Y. Chen, Y.G. Du, and D.Y. Du, A novel strategy for arsenic removal from dirty acid wastewater via CaCO3–Ca(OH)2–Fe(III) processing, J. Water Process. Eng., 12(2016), p. 41. doi: 10.1016/j.jwpe.2016.06.003
      [42]
      Y.F. Jia, L.Y. Xu, X. Wang, and G.P. Demopoulos, Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite, Geochim. Cosmochim. Acta, 71(2007), No. 7, p. 1643. doi: 10.1016/j.gca.2006.12.021

    Catalog


    • /

      返回文章
      返回