留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 9
Sep.  2022

图(15)  / 表(6)

数据统计

分享

计量
  • 文章访问数:  2786
  • HTML全文浏览量:  1130
  • PDF下载量:  91
  • 被引次数: 0
Wenshen Tang, Xinqi Yang, Chaobo Tian, and Yongsheng Xu, Microstructural heterogeneity and bonding strength of planar interface formed in additive manufacturing of Al–Mg–Si alloy based on friction and extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1755-1769. https://doi.org/10.1007/s12613-022-2506-4
Cite this article as:
Wenshen Tang, Xinqi Yang, Chaobo Tian, and Yongsheng Xu, Microstructural heterogeneity and bonding strength of planar interface formed in additive manufacturing of Al–Mg–Si alloy based on friction and extrusion, Int. J. Miner. Metall. Mater., 29(2022), No. 9, pp. 1755-1769. https://doi.org/10.1007/s12613-022-2506-4
引用本文 PDF XML SpringerLink
研究论文封面文章

基于摩擦挤压增材制造的Al–Mg–Si合金平直状界面组织非均质性和结合强度

  • 通讯作者:

    杨新岐    E-mail: xqyang@tju.edu.cn

文章亮点

  • (1)发现了无特征轴肩辅助摩擦挤压增材制造平直状界面弱连接缺陷并阐明成因。
  • (2)系统地研究了6061铝合金摩擦挤压增材制造界面晶粒结构和沉淀相演变规律。
  • (3)探索了改善6061铝合金增材试样力学性能的后热处理工艺可行性。
  • 实现增材路径自由成形的固相摩擦增材制造是一种具有较大发展潜力的创新金属近净成形制造技术,为快速制备高性能大尺寸轻合金构件提供了新的途径。本文采用自主研制的能够实现主动送料的固相摩擦增材制造设备和无特征工具轴肩,针对6061铝合金进行摩擦挤压增材制造工艺(Friction extrusion additive manufacturing, FEAM)试验,成功制备出单层沉积厚度约为4 mm 的单道双层增材试样,并对增材试样界面成形特征、沉积态和热处理态组织结构(晶粒尺寸及结构、沉淀相、织构)以及结合强度进行探究和分析。研究结果表明,工具轴肩转速为600 r/min,沉积速度为300 mm/min时施加的摩擦挤压与剪切变形作用较弱,增材层间结合界面呈平直状。沿增材试样厚度累积方向组织呈现明显非均匀性,其中增材层间摩擦界面晶粒细化最为显著(4.0 μm),并出现明显择优取向,主要沉淀相在增材过程中几乎全部溶解,使得这一区域硬度最低。经历一次热循环和塑性变形的沉积层出现较强的再结晶织构Cube,而经历两次热循环和塑性变形的沉积层晶粒主要以P织构和近Goss取向为主。沉积态和热处理态增材试样沿其厚度累积方向的抗拉强度分别能够达到6061-T651铝合金挤压棒材的57%和82.9%。
  • Research Article

    Microstructural heterogeneity and bonding strength of planar interface formed in additive manufacturing of Al–Mg–Si alloy based on friction and extrusion

    + Author Affiliations
    • Single-pass deposits of 6061 aluminum alloy with a single-layer thickness of 4 mm were fabricated by force-controlled friction- and extrusion-based additive manufacturing. The formation characteristics of the interface, which were achieved by using a featureless shoulder, were investigated and elucidated. The microstructure and bonding strength of the final build both with and without heat treatment were explored. A pronounced microstructural heterogeneity was observed throughout the thickness of the final build. Grains at the interface with Cu, {213}<111>, and Goss orientations prevailed, which were refined to approximately 4.0 μm. Nearly all of the hardening precipitates were dissolved, resulting in the bonding interface displaying the lowest hardness. The fresh layer, subjected to thermal processes and plastic deformation only once, was dominated by a strong recrystallization texture with a Cube orientation. The previous layer, subjected twice to thermal processes and plastic deformation, was governed by P- and Goss-related components. The ultimate tensile strength along the build direction in as-deposited and heat-treated states could reach 57.0% and 82.9% of the extruded 6061-T651 aluminum alloy.
    • loading
    • [1]
      H.Z. Yu, M.E. Jones, G.W. Brady, R.J. Griffiths, D. Garcia, H.A. Rauch, et al., Non-beam-based metal additive manufacturing enabled by additive friction stir deposition, Scripta Mater., 153(2018), p. 122. doi: 10.1016/j.scriptamat.2018.03.025
      [2]
      Z.Q. Liu, P.L. Zhang, S.W. Li, D. Wu, and Z.S. Yu, Wire and arc additive manufacturing of 4043 Al alloy using a cold metal transfer method, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 783. doi: 10.1007/s12613-019-1930-6
      [3]
      J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock, 3D printing of high-strength aluminium alloys, Nature, 549(2017), No. 7672, p. 365. doi: 10.1038/nature23894
      [4]
      K. Kandasamy, L.E. Renaghan, J.R. Calvert, K.D. Creehan, and J.P. Schultz, Solid-state additive manufacturing of aluminum and magnesium alloys, [in] Proceedings of the Materials Science and Technology Conference and Exhibition, Montreal, 2013, p. 59.
      [5]
      A.A. van der Stelt, T.C. Bor, H.J.M. Geijselaers, R. Akkerman, and A.H. van den Boogaard, Cladding of advanced Al alloys employing friction stir welding, Key Eng. Mater., 554-557(2013), p. 1014. doi: 10.4028/www.scientific.net/KEM.554-557.1014
      [6]
      O.G. Rivera, P.G. Allison, J.B. Jordon, O.L. Rodriguez, L.N. Brewer, Z. McClelland, et al., Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing, Mater. Sci. Eng. A, 694(2017), p. 1. doi: 10.1016/j.msea.2017.03.105
      [7]
      J. Gandra, H. Krohn, R.M. Miranda, P. Vilaça, L. Quintino, and J.F. dos Santos, Friction surfacing—A review, J. Mater. Process. Technol., 214(2014), No. 5, p. 1062. doi: 10.1016/j.jmatprotec.2013.12.008
      [8]
      K. Anderson-Wedge, D.Z. Avery, S.R. Daniewicz, J.W. Sowards, P.G. Allison, J.B. Jordon, et al., Characterization of the fatigue behavior of additive friction stir-deposition AA2219, Int. J. Fatigue, 142(2021), art. No. 105951. doi: 10.1016/j.ijfatigue.2020.105951
      [9]
      J.K. Yoder, R.J. Griffiths, and H.Z. Yu, Deformation-based additive manufacturing of 7075 aluminum with wrought-like mechanical properties, Mater. Des., 198(2021), art. No. 109288. doi: 10.1016/j.matdes.2020.109288
      [10]
      W.D. Hartley, D. Garcia, J.K. Yoder, E. Poczatek, J.H. Forsmark, S.G. Luckey, et al., Solid-state cladding on thin automotive sheet metals enabled by additive friction stir deposition, J. Mater. Process. Technol., 291(2021), art. No. 117045. doi: 10.1016/j.jmatprotec.2021.117045
      [11]
      B.J. Phillips, D.Z. Avery, T. Liu, O.L. Rodriguez, C.J.T. Mason, J.B. Jordon, et al., Microstructure-deformation relationship of additive friction stir-deposition Al–Mg–Si, Materialia, 7(2019), art. No. 100387. doi: 10.1016/j.mtla.2019.100387
      [12]
      B.A. Rutherford, D.Z. Avery, B.J. Phillips, H.M. Rao, K.J. Doherty, P.G. Allison, et al., Effect of thermomechanical processing on fatigue behavior in solid-state additive manufacturing of Al–Mg–Si alloy, Metals, 10(2020), No. 7, art. No. 947. doi: 10.3390/met10070947
      [13]
      D. Garcia, W.D. Hartley, H.A. Rauch, R.J. Griffiths, R.X. Wang, Z.J. Kong, et al., In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al–Mg–Si, Addit. Manuf., 34(2020), art. No. 101386.
      [14]
      M.E.J. Perry, R.J. Griffiths, D. Garcia, J.M. Sietins, Y.H. Zhu, and H.Z. Yu, Morphological and microstructural investigation of the non-planar interface formed in solid-state metal additive manufacturing by additive friction stir deposition, Addit. Manuf., 35(2020), art. No. 101293.
      [15]
      R.J. Griffiths, D. Garcia, J. Song, V.K. Vasudevan, M.A. Steiner, W.J. Cai, et al., Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: Process-microstructure linkages, Materialia, 15(2021), art. No. 100967. doi: 10.1016/j.mtla.2020.100967
      [16]
      B.J. Phillips, C.J.T. Mason, S.C. Beck, D.Z. Avery, K.J. Doherty, P.G. Allison, et al., Effect of parallel deposition path and interface material flow on resulting microstructure and tensile behavior of Al–Mg–Si alloy fabricated by additive friction stir deposition, J. Mater. Process. Technol., 295(2021), art. No. 117169. doi: 10.1016/j.jmatprotec.2021.117169
      [17]
      R.R. Shen and P. Efsing, Overcoming the drawbacks of plastic strain estimation based on KAM, Ultramicroscopy, 184(2018), p. 156. doi: 10.1016/j.ultramic.2017.08.013
      [18]
      G.J. Baczynski, R. Guzzo, M.D. Ball, and D.J. Lloyd, Development of roping in an aluminum automotive alloy AA6111, Acta Mater., 48(2000), No. 13, p. 3361. doi: 10.1016/S1359-6454(00)00141-5
      [19]
      O. Engler and J. Hirsch, Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications—A review, Mater. Sci. Eng. A, 336(2002), No. 1-2, p. 249. doi: 10.1016/S0921-5093(01)01968-2
      [20]
      P.D. Wu, S.R. MacEwen, D.J. Lloyd, and K.W. Neale, Effect of cube texture on sheet metal formability, Mater. Sci. Eng. A, 364(2004), No. 1-2, p. 182. doi: 10.1016/j.msea.2003.08.020
      [21]
      C.D. Marioara, S.J. Andersen, J. Røyset, O. Reiso, S. Gulbrandsen-Dahl, T.E. Nicolaisen, et al., Improving thermal stability in Cu-containing Al–Mg–Si alloys by precipitate optimization, Metall. Mater. Trans. A, 45(2014), No. 7, p. 2938. doi: 10.1007/s11661-014-2250-0
      [22]
      T. Saito, S. Muraishi, C.D. Marioara, S.J. Andersen, J. Røyset, and R. Holmestad, The effects of low Cu additions and predeformation on the precipitation in a 6060 Al–Mg–Si alloy, Metall. Mater. Trans. A, 44(2013), No. 9, p. 4124. doi: 10.1007/s11661-013-1754-3
      [23]
      M. Torsæter, W. Lefebvre, C.D. Marioara, S.J. Andersen, J.C. Walmsley, and R. Holmestad, Study of intergrown L and Q′ precipitates in Al–Mg–Si–Cu alloys, Scripta Mater., 64(2011), No. 9, p. 817. doi: 10.1016/j.scriptamat.2011.01.008
      [24]
      K. Buchanan, K. Colas, J. Ribis, A. Lopez, and J. Garnier, Analysis of the metastable precipitates in peak-hardness aged Al–Mg–Si(–Cu) alloys with differing Si contents, Acta Mater., 132(2017), p. 209. doi: 10.1016/j.actamat.2017.04.037
      [25]
      C. Zener and J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys., 15(1944), No. 1, p. 22. doi: 10.1063/1.1707363
      [26]
      S.F. Medina and C.A. Hernandez, Modelling of the dynamic recrystallization of austenite in low alloy and microalloyed steels, Acta Mater., 44(1996), No. 1, p. 165. doi: 10.1016/1359-6454(95)00154-6
      [27]
      F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Amsterdam, 2004, p. 327.
      [28]
      B. Bagheri, M. Abbasi, and A. Abdollahzadeh, Microstructure and mechanical characteristics of AA6061-T6 joints produced by friction stir welding, friction stir vibration welding and tungsten inert gas welding: A comparative study, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 450. doi: 10.1007/s12613-020-2085-1
      [29]
      K. Huang, K. Zhang, K. Marthinsen, and R.E. Logé, Controlling grain structure and texture in Al–Mn from the competition between precipitation and recrystallization, Acta Mater., 141(2017), p. 360. doi: 10.1016/j.actamat.2017.09.032
      [30]
      S.G. Chowdhury, S. Das, B. Ravikumar, and P.K. De, Twinning-induced sluggish evolution of texture during recrystallization in AISI 316L stainless steel after cold rolling, Metall. Mater. Trans. A, 37(2006), No. 8, p. 2349. doi: 10.1007/BF02586209

    Catalog


    • /

      返回文章
      返回