Cite this article as: |
Lianggui Ren, Yiqun Wang, Xin Zhang, Qinchuan He, and Guanglei Wu, Efficient microwave absorption achieved through in situ construction of core–shell CoFe2O4@mesoporous carbon hollow spheres, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 504-514. https://doi.org/10.1007/s12613-022-2509-1 |
王益群 E-mail: wangyiqun17@cdut.edu.cn
吴广磊 E-mail: wuguanglei@qdu.edu.cn
Supplementary Informations-IJM-01-2022-0098.docx |
[1] |
Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, and J.W. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing, Angew. Chem. Int. Ed, 61(2022), No. 15, art. No. e202200705. doi: 10.1002/anie.202200705
|
[2] |
J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253. doi: 10.1016/j.cej.2021.132253
|
[3] |
Y.X. Han, K.P. Ruan, and J.W. Gu, Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances, Nano Res., 15(2022), p. 4747. doi: 10.1007/s12274-022-4159-z
|
[4] |
K.R. Yang, W.J. Chen, Y.S. Zhao, et al., Enhancing dielectric strength of thermally conductive epoxy composites by preventing interfacial charge accumulation using micron-sized diamond, Compos. Sci. Technol., 221(2022), art. No. 109178. doi: 10.1016/j.compscitech.2021.109178
|
[5] |
H. Lv, Z. Yang, B. Liu, et al., A flexible electromagnetic wave-electricity harvester, Nat. Commun., 12(2021), art. No. 834. doi: 10.1038/s41467-021-21103-9
|
[6] |
L. Chai, Y.Q. Wang, N.F. Zhou, et al., In-situ growth of core–shell ZnFe2O4@porous hollow carbon microspheres as an efficient microwave absorber, J. Colloid. Interface. Sci., 581(2020), p. 475. doi: 10.1016/j.jcis.2020.07.102
|
[7] |
S.H. Zhu, C.W. Lou, S.H. Zhang, et al., Clean surface additive manufacturing of aramid paper-based electrically heated devices for medical therapy application, Surf. Interfaces, 29(2022), art. No. 101689. doi: 10.1016/j.surfin.2021.101689
|
[8] |
Z.R. Jia, M.Y. Kong, B.W. Yu, Y et al., Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties, J. Mater. Sci. Technol., 127(2022), p. 153. doi: 10.1016/j.jmst.2022.04.005
|
[9] |
Q.L. Sun, W. Ye, J.H. Cheng, and X.Y. Long, Effects of boron nitride coatings at high temperatures and electromagnetic wave absorption properties of carbon fiber-based magnetic materials, J. Nanomater., 2020(2020), art. No. 3672517. doi: 10.1155/2020/3672517
|
[10] |
C. Mu, X. Du, A. Nie, et al., Microwave absorption properties of heterostructure composites of two dimensional layered magnetic materials and graphene nanosheets, Appl. Phys. Lett., 115(2019), No. 4, art. No. 043103. doi: 10.1063/1.5099315
|
[11] |
D.Q. Zhang, Y.X. Jia, J.Y. Cheng, et al., High-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structures, J. Alloys Compd., 758(2018), p. 62. doi: 10.1016/j.jallcom.2018.05.130
|
[12] |
C.Q. Song, X.W. Yin, M.K. Han, et al., Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties, Carbon, 116(2017), p. 50. doi: 10.1016/j.carbon.2017.01.077
|
[13] |
X.M. Huang, X.H. Liu, Z.R. Jia, et al., Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1398. doi: 10.1007/s42114-021-00304-2
|
[14] |
T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919. doi: 10.1016/j.cej.2021.133919
|
[15] |
Z. Xiang, Y.M. Song, J. Xiong, et al., Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks, Carbon, 142(2019), p. 20. doi: 10.1016/j.carbon.2018.10.014
|
[16] |
H.X. Zhang, B.B. Wang, A.L. Feng, et al., Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers, Composites Part B, 167(2019), p. 690. doi: 10.1016/j.compositesb.2019.03.055
|
[17] |
Z.J. Li, H. Lin, S.Q. Ding, et al., Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon, Carbon, 167(2020), p. 148. doi: 10.1016/j.carbon.2020.05.070
|
[18] |
Y. Qiu, Y. Lin, H.B. Yang, et al., Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123207. doi: 10.1016/j.cej.2019.123207
|
[19] |
J.X. Chai, J.Y. Cheng, D.Q. Zhang, et al., Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets, J. Alloys Compd., 829(2020), art. No. 154531. doi: 10.1016/j.jallcom.2020.154531
|
[20] |
C.Y. Liu, B.C. Wang, C. Zhang, et al., Simple preparation and excellent microwave attenuation property of Fe3O4- and FeS2- decorated graphene nanosheets by liquid-phase exfoliation, J. Alloys Compd., 810(2019), art. No. 151881. doi: 10.1016/j.jallcom.2019.151881
|
[21] |
L.R. Cui, C.H. Tian, L.L. Tang, et al., Space-confined synthesis of core–shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorption, ACS Appl. Mater. Interfaces, 11(2019), No. 34, p. 31182. doi: 10.1021/acsami.9b09779
|
[22] |
D. Ding, Y. Wang, X.D. Li, et al., Rational design of core–shell Co@C microspheres for high-performance microwave absorption, Carbon, 111(2017), p. 722. doi: 10.1016/j.carbon.2016.10.059
|
[23] |
L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2–0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993. doi: 10.1016/j.coco.2021.100993
|
[24] |
Y.N. Shi, X.H. Gao, and J. Qiu, Synthesis and strengthened microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foam, Ceram. Int., 45(2019), No. 3, p. 3126. doi: 10.1016/j.ceramint.2018.10.212
|
[25] |
S.H. Zhang, H.B. Dong, R.D. He, et al., Hydro electroactive Cu/Zn coated cotton fiber nonwovens for antibacterial and antiviral applications, Int. J. Biol. Macromol., 207(2022), p. 100. doi: 10.1016/j.ijbiomac.2022.02.155
|
[26] |
Y.P. Zhao, H. Zhang, X. Yang, et al., In situ construction of hierarchical core–shell Fe3O4@C nanoparticles–helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorption, Carbon, 171(2021), p. 395. doi: 10.1016/j.carbon.2020.09.036
|
[27] |
Z.H. Du, X.B. Chen, Y.W. Zhang, et al., One-pot hydrothermal preparation of Fe3O4 decorated graphene for microwave absorption, Materials, 13(2020), No. 14, p. 3065. doi: 10.3390/ma13143065
|
[28] |
M. Fu, Q.Z. Jiao, Y. Zhao, and H.S. Li, Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials, J. Mater. Chem. A, 2(2014), No. 3, p. 735. doi: 10.1039/C3TA14050D
|
[29] |
J.W. Wang, Z.R. Jia, X.H. Liu, et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption, Nano-Micro Lett., 13(2021), No. 1, art. No. 175. doi: 10.1007/s40820-021-00704-5
|
[30] |
X.D. Zhang, X. Ren, C. Wang, N.K. Chen, and N.N. Song, Synthesis of layered Fe3O4 nanodisk and nanostructure dependent microwave absorption property, J. Mater. Sci. Mater. Electron., 32(2021), No. 4, p. 4404. doi: 10.1007/s10854-020-05183-9
|
[31] |
X. Cao, Z.R. Jia, D. Hu, and G.L. Wu, Synergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorption, Adv. Compos. Hybrid Mater., 5(2022), p. 1030. doi: 10.1007/s42114-021-00415-w
|
[32] |
L.H. Wang, H. Guan, J.Q. Hu, et al., Jute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorber, J. Alloys Compd., 803(2019), p. 1119. doi: 10.1016/j.jallcom.2019.06.351
|
[33] |
W.Y. Dai, F. Chen, H. Luo, et al., Synthesis of yolk–shell structured carbonyl iron@void@nitrogen doped carbon for enhanced microwave absorption performance, J. Alloys Compd., 812(2020), art. No. 152083. doi: 10.1016/j.jallcom.2019.152083
|
[34] |
F. Zhang, W.D. Zhang, W.F. Zhu, B. Cheng, H. Qiu, and S.H. Qi, Core–shell nanostructured CS/MoS2: A promising material for microwave absorption, Appl. Surf. Sci., 463(2019), p. 182. doi: 10.1016/j.apsusc.2018.08.121
|
[35] |
G.Z. Wang, Z. Gao, S.W. Tang, et al., Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition, ACS Nano, 6(2012), No. 12, p. 11009. doi: 10.1021/nn304630h
|
[36] |
D. Lan, Z.G. Gao, Z.H. Zhao, et al., Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption, Chem. Eng. J., 408(2021), art. No. 127313. doi: 10.1016/j.cej.2020.127313
|
[37] |
Y.Q. Wang, H.G. Wang, J.H. Ye, L.Y. Shi, and X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123096. doi: 10.1016/j.cej.2019.123096
|
[38] |
Y.Q. Zhang, Y.Y. Liu, L.S. Zhou, et al., The role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen species, Sens. Actuators B, 273(2018), p. 991. doi: 10.1016/j.snb.2018.05.167
|
[39] |
G.L. Wu, Y.H. Cheng, Z.H. Yang, et al., Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior, Chem. Eng. J., 333(2018), p. 519. doi: 10.1016/j.cej.2017.09.174
|
[40] |
S.P. Liu, S.H. Zhang, L.G. Yang, et al., Nanofibrous scaffold by cleaner magnetron-sputtering additive manufacturing: A novel biocompatible platform for antibacterial application, J. Clean. Prod., 315(2021), art. No. 128201. doi: 10.1016/j.jclepro.2021.128201
|
[41] |
H.Y. Yan, Y.Q. Fu, X.M. Wu, et al., Core–shell structured NaTi2(PO4)3@polyaniline as an efficient electrode material for electrochemical energy storage, Solid State Ionics, 336(2019), p. 95. doi: 10.1016/j.ssi.2019.03.024
|
[42] |
S.J. Zhang, Z.R. Jia, B. Cheng, et al., Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-review, Adv. Compos. Hybrid Mater., 5(2022), p. 2440. doi: 10.1007/s42114-022-00458-7
|
[43] |
X. Li, C.Y. Wen, L.T. Yang, et al., MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy, Carbon, 175(2021), p. 509. doi: 10.1016/j.carbon.2020.11.089
|
[44] |
H.B. Dong, S.H. Zhang, L.G. Yang, et al., Cu/Zn galvanic couples composite antibacterial dressings prepared by template-assisted magnetron sputtering, Composites Part B, 224(2021), art. No. 109240. doi: 10.1016/j.compositesb.2021.109240
|
[45] |
X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass, Compos. Commun., 21(2020), art. No. 100404. doi: 10.1016/j.coco.2020.100404
|
[46] |
S.P. Liu, Z.Q. Zheng, S. Wang, et al., Polydopamine-coated chitosan/calcium pyrophosphate hybrid microflowers as an effective hemostatic agent, Carbohydr. Polym., 224(2019), art. No. 115175. doi: 10.1016/j.carbpol.2019.115175
|
[47] |
X. Zhang, J. Qiao, C. Liu, et al., A MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorption, Inorg. Chem. Front., 7(2020), No. 2, p. 385. doi: 10.1039/C9QI01259A
|
[48] |
F. Zhang, Z.R. Jia, Z. Wang, et al., Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber, Mater. Today Phys., 20(2021), art. No. 100475. doi: 10.1016/j.mtphys.2021.100475
|
[49] |
Y. Cheng, J. Cao, Y. Li, et al., The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core–shell hybrids toward microwave absorption, ACS Sustainable Chem. Eng., 6(2018), No. 1, p. 1427. doi: 10.1021/acssuschemeng.7b03846
|
[50] |
Y. Liu, Z.R. Jia, Q.Q. Zhan, et al., Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption, Nano Res., 15(2022), p. 5590. doi: 10.1007/s12274-022-4287-5
|
[51] |
L.G. Ren, Y.Q. Wang, Z.R. Jia, Q.C. He, and G.L. Wu, Controlling the heterogeneous interfaces of Fe3O4/N-doped porous carbon via facile swelling for enhancing the electromagnetic wave absorption, Compos. Commun., 29(2022), art. No. 101052. doi: 10.1016/j.coco.2021.101052
|
[52] |
P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, and J.W. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures, Nano-Micro Lett., 14(2022), No. 1, art. No. 51. doi: 10.1007/s40820-022-00798-5
|
[53] |
P.B. Liu, Y.Q. Zhang, J. Yan, et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 368(2019), p. 285. doi: 10.1016/j.cej.2019.02.193
|
[54] |
H.Q. Zhao, Y. Cheng, H.L. Lv, G.B. Ji, and Y.W. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption, Carbon, 142(2019), p. 245. doi: 10.1016/j.carbon.2018.10.027
|
[55] |
X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance, Carbon, 152(2019), p. 827. doi: 10.1016/j.carbon.2019.06.080
|
[56] |
L. Chai, Y.Q. Wang, Z.R. Jia, et al., Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via Ostwald ripening process for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 429(2022), art. No. 132547. doi: 10.1016/j.cej.2021.132547
|
[57] |
X.J. Zhu, Y.Y. Dong, F. Pan, et al., Covalent organic framework-derived hollow core–shell Fe/Fe3O4@porous carbon composites with corrosion resistance for lightweight and efficient microwave absorption, Compos. Commun., 25(2021), art. No. 100731. doi: 10.1016/j.coco.2021.100731
|
[58] |
H.X. Zhang, Z.R. Jia, B.B. Wang, et al., Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co-CoFe2O4@mesoporous hollow carbon spheres, Chem. Eng. J., 421(2021), art. No. 129960. doi: 10.1016/j.cej.2021.129960
|
[59] |
L. Kong, S.H. Luo, S.Y. Zhang, et al., Ultralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 570. doi: 10.1007/s12613-022-2476-6
|
[60] |
C.X. Wang, Z.R. Jia, S.Q. He, et al., Metal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuation, J. Mater. Sci. Technol., 108(2022), p. 236. doi: 10.1016/j.jmst.2021.07.049
|
[61] |
X. Feng, P.F. Yin, L.M. Zhang, et al., Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic-wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 559. doi: 10.1007/s12613-022-2488-2
|
[62] |
X.R. Gao, Z.R. Jia, B.B. Wang, et al., Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber, Chem. Eng. J., 419(2021), art. No. 130019. doi: 10.1016/j.cej.2021.130019
|
[63] |
Y.L. Zhang, K.P. Ruan, and J.W. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities, Small, 17(2021), No. 42, art. No. 2101951. doi: 10.1002/smll.202101951
|
[64] |
T.Q. Hou, Z.R. Jia, A.L. Feng, et al., Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity, J. Mater. Sci. Technol., 68(2021), p. 61. doi: 10.1016/j.jmst.2020.06.046
|
[65] |
Y. Zhao, L.L. Hao, X.D. Zhang, et al., A novel strategy in electromagnetic wave absorbing and shielding materials design: Multi-responsive field effect, Small. Sci., 2(2022), No. 2, art. No. 2100077. doi: 10.1002/smsc.202100077
|
[66] |
T.T. Zheng, Z.R. Jia, Q.Q. Zhan, et al., Self-assembled multi-layered hexagonal-like MWCNTs/MnF2/CoO nanocomposite with enhanced electromagnetic wave absorption, Carbon, 186(2022), p. 262. doi: 10.1016/j.carbon.2021.10.025
|
[67] |
Z.D. Wang, T. Zhang, J.K. Wang, et al., The investigation of the effect of filler sizes in 3D-BN skeletons on thermal conductivity of epoxy-based composites, Nanomaterials, 12(2022), No. 3, art. No. 446. doi: 10.3390/nano12030446
|
[68] |
G.S. Ma, L. Xia, H. Yang, et al., Multifunctional lithium aluminosilicate/CNT composite for gas filtration and electromagnetic wave absorption, Chem. Eng. J., 418(2021), art. No. 129429. doi: 10.1016/j.cej.2021.129429
|
[69] |
M. Chang, Z.R. Jia, S.Q. He, et al., Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability, Composites Part B, 225(2021), art. No. 109306. doi: 10.1016/j.compositesb.2021.109306
|
[70] |
F. Pan, Z.C. Liu, B.W. Deng, et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance, Nano-Micro Lett., 13(2021), No. 1, art. No. 43. doi: 10.1007/s40820-020-00568-1
|