留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 10
Oct.  2022

图(13)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  6231
  • HTML全文浏览量:  2731
  • PDF下载量:  130
  • 被引次数: 0
Xudong Mao, Pritesh Garg, Xiaojun Hu, Yuan Li, Samik Nag, Saurabh Kundu, and Jianliang Zhang, Kinetic analysis of iron ore powder reaction with hydrogen–carbon monoxide, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1882-1890. https://doi.org/10.1007/s12613-022-2512-6
Cite this article as:
Xudong Mao, Pritesh Garg, Xiaojun Hu, Yuan Li, Samik Nag, Saurabh Kundu, and Jianliang Zhang, Kinetic analysis of iron ore powder reaction with hydrogen–carbon monoxide, Int. J. Miner. Metall. Mater., 29(2022), No. 10, pp. 1882-1890. https://doi.org/10.1007/s12613-022-2512-6
引用本文 PDF XML SpringerLink
研究论文

H2–CO混合气体与铁精矿的还原动力学分析

  • 通讯作者:

    胡晓军    E-mail: huxiaojun@ustb.edu.cn

文章亮点

  • (1) 系统地研究了不同组分下的H2–CO混合气体对铁精矿的还原行为。
  • (2) 开发了H2–CO混合气体还原铁精矿的速率关系模型。
  • (3) 得到了不同气体组分下反应的表观活化能与可能的控速环节。
  • 为了降低二氧化碳的排放量,氢气作为一种绿色清洁能源在替代部分碳质能源中扮演着越来越重要的角色,在钢铁行业中也引起了广泛的关注并成为了近年来的研究热点。本文使用了热分析仪研究了不同组分下的H2–CO混合气体对铁精矿的还原行为,并采用了显微组织观察、物相分析等手段研究了铁精矿样品反应前后的变化情况。研究结果表明,随着反应的进行,H2的分压对还原速率的影响逐渐增大。在1173和1373 K时,H2还原铁精矿样品的速率分别约为CO还原铁精矿样品的速率的3倍和4倍。在还原反应后期,平均还原速率的对数与混合气体的成分之间成一定的线性关系。此外,H2在1023 K时能够促进碳的沉积。随着H2含量从20vol%增加到100vol%,还原阶段的表观活化能从约35.0增加到45.4 kJ/mol。这一发现表明,该阶段可能的控速环节为气体扩散和界面化学反应相结合的混合控速。
  • Research Article

    Kinetic analysis of iron ore powder reaction with hydrogen–carbon monoxide

    + Author Affiliations
    • Iron ore powder was isothermally reduced at 1023–1373 K with hydrogen/carbon monoxide gas mixture (from 0vol%H2/100vol%CO to 100vol%H2/0vol%CO). Results indicated that the whole reduction process could be divided into two parts that proceed in series. The first part represents a double-step reduction (Fe2O3→Fe3O4→FeO), in which the kinetic condition is more feasible compared with that in the second part representing a single-step reduction (FeO→Fe). The influence of hydrogen partial pressure on the reduction rate gradually increases as the reaction proceeds. The average reduction rate of hematite ore with pure hydrogen is about three and four times higher than that with pure carbon monoxide at 1173 and 1373 K, respectively. In addition, the logarithm of the average rate is linear to the composition of the gas mixture. Hydrogen can prominently promote carbon deposition to about 30% at 1023 K. The apparent activation energy of the reduction stage increases from about 35.0 to 45.4 kJ/mol with the increase in hydrogen content from 20vol% to 100vol%. This finding reveals that the possible rate-controlling step at this stage is the combined gas diffusion and interfacial chemical reaction.
    • loading
    • [1]
      M.C. Xie, G. Zhao, J.W. Chen, and K.L. Cao, Analysis of industrial metabolic flux in blast furnace ironmaking system, IOP Conf. Ser.: Earth Environ. Sci., 358(2019), No. 3, art. No. 032034. doi: 10.1088/1755-1315/358/3/032034
      [2]
      Y. Kawashiri, T. Nouchi, and H. Matsuno, Effect of nitrogen-less reducing atmosphere on permeability of cohesive layer in blast furnace, Tetsu-to-Hagane, 104(2018), No. 9, p. 467. doi: 10.2355/tetsutohagane.TETSU-2018-022
      [3]
      J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
      [4]
      W.H. Kim, S. Lee, S.M. Kim, and D.J. Min, The retardation kinetics of magnetite reduction using H2 and H2–H2O mixtures, Int. J. Hydrog. Energy, 38(2013), No. 10, p. 4194. doi: 10.1016/j.ijhydene.2013.01.147
      [5]
      J. Dang, Y.J. Wu, Z.P. Lv, Z.X. You, S.F. Zhang, and X.W. Lv, A new kinetic model for hydrogen reduction of metal oxides under external gas diffusion controlling condition, Int. J. Refract. Met. Hard Mater., 77(2018), p. 90. doi: 10.1016/j.ijrmhm.2018.07.011
      [6]
      R. Zhang, J. Dang, D. Liu, Z.P. Lv, G.Q. Fan, and L.W. Hu, Reduction of perovskite-geikielite by methane-hydrogen gas mixture: Thermodynamic analysis and experimental results, Sci. Total Environ., 699(2020), art. No. 134355. doi: 10.1016/j.scitotenv.2019.134355
      [7]
      A.A. El-Geassy and V. Rajakumar, Influence of particle size on the gaseous reduction of wustite at 900−1100°C, ISIJ Int., 25(1985), No. 12, p. 1202. doi: 10.2355/isijinternational1966.25.1202
      [8]
      M.M. Sun, J.L. Zhang, K.J. Li, K. Guo, Z.M. Wang, and C.H. Jiang, Gasification kinetics of bulk coke in the CO2/CO/H2/H2O/N2 system simulating the atmosphere in the industrial blast furnace, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1247. doi: 10.1007/s12613-019-1846-1
      [9]
      M.N.A. Tahari, F. Salleh, T.S.T. Saharuddin, et al., Influence of hydrogen and various carbon monoxide concentrations on reduction behavior of iron oxide at low temperature, Int. J. Hydrog. Energy, 44(2019), No. 37, p. 20751. doi: 10.1016/j.ijhydene.2018.09.186
      [10]
      R.A.D. Rodriguez, A.N. Conejo, and E.B. Bedolla, Kinetics of reduction of Fe2O3 particles with H2–CO mixtures at low temperatures, Iron &Steelmaker, 30(2003), No. 1, p. 25.
      [11]
      A. Bonalde, A. Henriquez, and M. Manrique, Kinetic analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent, ISIJ Int., 45(2005), No. 9, p. 1255. doi: 10.2355/isijinternational.45.1255
      [12]
      A. Steinfeld, A. Frei, and P. Kuhn, Thermoanalysis of the combined Fe3O4-reduction and CH4-reforming processes, Metall. Mater. Trans. B, 26(1995), No. 3, p. 509. doi: 10.1007/BF02653867
      [13]
      N. Towhidi and J. Szekely, The influence of carbon deposition on the reduction kinetics of commercial grade hematite pellets with CO, H2, and N2, Metall. Trans. B, 14(1983), No. 3, p. 359. doi: 10.1007/BF02654354
      [14]
      P. Garg, X.J. Hu, Y. Li, K.J. Li, S. Nag, and J.L. Zhang, Kinetics of iron oxide reduction in H2/H2O gas mixture: Global and stepwise reduction, Metall. Mater. Trans. B, 53(2022), No. 3, p. 1759. doi: 10.1007/s11663-022-02485-7
      [15]
      A.A. El-Geassy and M.I. Nasr, Influence of original structure on the kinetics and mechanisms of carbon monoxide reduction of hematite compacts, ISIJ Int., 30(1990), No. 6, p. 417. doi: 10.2355/isijinternational.30.417
      [16]
      W.E. Garner, Chemistry of the Solid State, Academic Press, New York, 1955.
      [17]
      A. Khawam and D.R. Flanagan, Solid-state kinetic models: Basics and mathematical fundamentals, J. Phys. Chem. B, 110(2006), No. 35, p. 17315. doi: 10.1021/jp062746a
      [18]
      A.A. El-Geassy and V. Rajakumar, Gaseous reduction of wustite with H2, CO and H2–CO mixtures, ISIJ Int., 25(1985), No. 6, p. 449. doi: 10.2355/isijinternational1966.25.449
      [19]
      X.J. Zuo, J.S. Wang, X.W. An, X.F. She, and Q.G. Xue, Reduction behaviors of pellets under different reducing potentials, J. Iron Steel Res. Int., 20(2013), No. 12, p. 12. doi: 10.1016/S1006-706X(13)60210-1
      [20]
      R.J. Fruehan, The rate of carburization of iron in CO–H2 atmospheres: Part I. Effect of temperature and CO and H2-pressures, Metall. Trans., 4(1973), No. 9, p. 2123. doi: 10.1007/BF02643276
      [21]
      S.H. Geng, Fundamental Research on Gas-based Direct Reduction of Iron Ore with Reformed Coke Oven Gas [Dissertation], Shanghai University, Shanghai, 2018, p. 113.
      [22]
      A. Khawam and D.R. Flanagan, Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics, J. Phys. Chem. B, 109(2005), No. 20, p. 10073. doi: 10.1021/jp050589u
      [23]
      A.K. Galwey and M.E. Brown, Application of the Arrhenius equation to solid state kinetics: Can this be justified? Thermochim. Acta, 386(2002), No. 1, p. 91. doi: 10.1016/S0040-6031(01)00769-9
      [24]
      A. Khawam and D.R. Flanagan, Role of isoconversional methods in varying activation energies of solid-state kinetics: I. isothermal kinetic studies, Thermochim. Acta, 429(2005), No. 1, p. 93. doi: 10.1016/j.tca.2004.11.030
      [25]
      H. Tanaka, Thermal analysis and kinetics of solid state reactions, Thermochim. Acta, 267(1995), p. 29. doi: 10.1016/0040-6031(95)02464-6
      [26]
      A. Ortega, The kinetics of solid-state reactions toward consensus—Part I: Uncertainties, failures, and successes of conventional methods, Int. J. Chem. Kinet., 33(2001), No. 6, p. 343. doi: 10.1002/kin.1028
      [27]
      B. Janković, B. Adnađević, and J. Jovanović, Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: Thermogravimetric analysis, Thermochim. Acta, 452(2007), No. 2, p. 106. doi: 10.1016/j.tca.2006.07.022
      [28]
      G. Munteanu, P. Budrugeac, L. Ilieva, T. Tabakova, D. Andreeva, and E. Segal, Kinetics of temperature programmed reduction of Fe3O4 promoted with copper: Application of iso-conversional methods, J. Mater. Sci., 38(2003), No. 9, p. 1995. doi: 10.1023/A:1023589405546
      [29]
      M.I. Nasr, A.A. Omar, M.H. Khedr, and A.A. El-Geassy, Effect of nickel oxide doping on the kinetics and mechanism of iron oxide reduction, ISIJ Int., 35(1995), No. 9, p. 1043. doi: 10.2355/isijinternational.35.1043

    Catalog


    • /

      返回文章
      返回