Cite this article as: |
Yuanding Huangand Bin Jiang, Editorial for special issue on developments of magnesium alloys for structural and functional applications, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1307-1309. https://doi.org/10.1007/s12613-022-2515-3 |
蒋斌 E-mail: jiangbinrong@cqu.edu.cn
镁合金有诸多优良性能如高比强度,良好的铸造性能及阻尼性能, 作为轻量化结构材料在交通运输业及航空业有广泛的应用前景。为了拓宽镁合金的应用前景,过去在如何进一步提高镁合金的高温性能和如何进一步改善镁合金的室温塑性与成型性方面进行了大量的研究。镁合金除了在结构方面的应用外,它们也可被开发为功能材料应用于相关领域。基于镁合金自身的腐蚀特点、良好的生物相容性与人体骨骼相近的弹性模量,其被研究开发为可降解医用材料应用于体内。除医疗方面的功能性应用外,镁合金在作为电池阳极材料和储氢材料方面也表现出巨大的潜在应用前景。
遗憾的是镁合金还存在几个方面的应用瓶颈,如室温塑性及成型差、形变不对称性、强度低。作为潜在医疗植入降解材料,其降解速度又过快。为了解决这些问题, 促进镁合金的广泛应用, 开发高性能镁合金结构材料及其功能材料已成为当前材料科学、生物科学及能源领域的研究热点。
因此,为了解镁合金开发及其应用方面的最新进展及考虑到进一步拓宽镁合金应用的重要性,我们推出了就镁合金开发、加工工艺、合金的表面处理、及作为储氢材料的专刊。本专刊共收录了17篇论文,包括1篇镁合金表面处理综述及16篇研究论文。希望通过本专刊收录的论文能够帮助相关研究人员对镁合金作为结构材料及功能材料的研究进展方面有综合全面的了解。
[1] |
T.T. Zhang, W.B. Yu, C.S. Ma, Y.Q. Zhou, and S.M. Xiong, Effects of runner design and pressurization on the microstructure of a high-pressure die cast Mg–3.0Nd–0.3Zn–0.6Zr alloy, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1310. doi: 10.1007/s12613-021-2386-z
|
[2] |
H.B. Liao, L.L. Mo, X. Zhou, Z.Z. Yuan, and J. Du, Revealing the nucleation event of Mg–Al alloy induced by Fe impurity, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1317. doi: 10.1007/s12613-021-2406-z
|
[3] |
C. He, Y.B. Zhang, M. Yuan, B. Jiang, Q.H. Wang, Y.F. Chai, G.S. Huang, D.F. Zhang, and F.S. Pan, Improving the room-temperature bendability of Mg–3Al–1Zn alloy sheet by introducing a bimodal microstructure and the texture re-orientation, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1322. doi: 10.1007/s12613-021-2384-1
|
[4] |
Y. Ishiguro, X.S. Huang, Y. Tsukada, T. Koyama, and Y, Chino, Effect of bending and tension deformation on the texture evolution and stretch formability of Mg–Zn–RE–Zr alloy, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1334. doi: 10.1007/s12613-021-2398-8
|
[5] |
H.B. Yang, Y.F. Chai, B. Jiang, C. He, J.J. He, Q.S. Yang, and M. Yuan, Enhanced mechanical properties of Mg–3Al–1Zn alloy sheets through slope extrusion, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1343. doi: 10.1007/s12613-021-2370-7
|
[6] |
Q. Li, D. Meng, Z.C. Fu, H. Zhao, C. Yang, Y. Peng, and B.D. Shi, Effect of axial preloading on mechanical behavior during the free-end torsion of an extruded AZ31 magnesium alloy, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1351. doi: 10.1007/s12613-022-2417-4
|
[7] |
F.L. Zheng, H.S. Chen, Y.Q. Zhang, W.X. Wang, and H.H. Nie, Microstructure evolution and corrosion resistance of AZ31 magnesium alloy tube by stagger spinning, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1361. doi: 10.1007/s12613-021-2396-x
|
[8] |
W.J. Liu, B. Jiang, H.C. Xiang, Q. Ye, S.Q. Xia, S.Q. Chen, J.F. Song, Y.L. Ma, and M.B. Yang, High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1373. doi: 10.1007/s12613-022-2456-x
|
[9] |
J. Zhao, B. Jiang, Q.H. Wang, M. Yuan, Y.F. Chai, G.S. Huang, and F.S. Pan, Effects of Li addition on the microstructure and tensile properties of the extruded Mg–1Zn–xLi alloy, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1380. doi: 10.1007/s12613-021-2340-0
|
[10] |
Z.R. Zeng, M.Z. Bian, S.W. Xu, W.N. Tang, C. Davies, N. Birbilis, and J.F. Nie, Optimisation of alloy composition for highly-formable magnesium sheet, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1388. doi: 10.1007/s12613-021-2365-4
|
[11] |
K. Yang, H.C. Pan, S. Du, M. Li, J.R. Li, H.B. Xie, Q.Y. Huang, H.J. Mo, and G.W. Qin, Low-cost and high-strength Mg–Al–Ca–Zn–Mn wrought alloy with balanced ductility, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1396. doi: 10.1007/s12613-021-2395-y
|
[12] |
W.T. Chen, W.B. Yu, P.C. Zhang, X.F. Pi, C.S. Ma, G.Z. Ma, and L. Zhang, Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlNx MAX phase, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1406. doi: 10.1007/s12613-022-2427-2
|
[13] |
J.Y. Zhang, X.Z. Zhao, D.A. Meng, and Q.Y. Han, Utilization of surface nanocrystalline to improve the bendability of AZ31 Mg alloy sheet, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1413. doi: 10.1007/s12613-022-2414-7
|
[14] |
H.M. Xie, J.H. Dai, and D. Zhou, Tribological behaviors of graphene oxide partly substituted with nano-SiO2 as lubricant additives in water for magnesium alloy/steel interfaces, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1425. doi: 10.1007/s12613-022-2465-9
|
[15] |
D. Saran, A. Kumar, S. Bathula, D. Klaumünzer, and K.K Sahu, Review on the phosphate-based conversion coatings of magnesium and its alloys, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1435. doi: 10.1007/s12613-022-2419-2
|
[16] |
S.Y. Jin, X.C. Ma, R.Z. Wu, T.Q. Li, J.X. Wang, B.L Krit, L.G. Hou, J.H. Zhang, and G.X, Wang, Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg–9Li–3Al alloy, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1453. doi: 10.1007/s12613-021-2377-0
|
[17] |
M.C. Song, L.T. Zhang, J.G. Zheng, Z.D. Yu, and S.N. Wang, Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater, 29(2022), No. 7, p. 1464. doi: 10.1007/s12613-021-2393-0
|