留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  484
  • HTML全文浏览量:  140
  • PDF下载量:  19
  • 被引次数: 0
Xiaotian Yang, Xinhua Wang, Jun Zhou, Hengli Wei, Rong Zeng,  and Wensheng Li, Effect of Cu addition on the microstructure and tribological performance of Ni60 directional structure coating, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 715-723. https://doi.org/10.1007/s12613-022-2516-2
Cite this article as:
Xiaotian Yang, Xinhua Wang, Jun Zhou, Hengli Wei, Rong Zeng,  and Wensheng Li, Effect of Cu addition on the microstructure and tribological performance of Ni60 directional structure coating, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 715-723. https://doi.org/10.1007/s12613-022-2516-2
引用本文 PDF XML SpringerLink
研究论文

Cu元素对Ni60定向结构涂层微观组织及摩擦学性能影响

  • 通讯作者:

    杨效田    E-mail: 398830990@qq.com

文章亮点

  • (1) 通过Cu元素添加制备了具有减摩耐磨综合性能良好的Ni60/Cu定向结构涂层。
  • (2) 研究了元素Cu对Ni60定向结构涂层微观组织、物相演变、显微硬度和摩擦学行为的影响。
  • (3) 探讨了元素Cu对Ni基合金定向结构涂层减摩耐磨性的影响机理。
  • 采用自主研发的定向结构涂层制备装置成功研制出定向结构Ni基合金高耐磨耐腐蚀涂层的基础上,为了赋予涂层减摩特性,使涂层具有减摩耐磨综合性能,本文将廉价的Cu元素引入涂层,采用火焰喷涂+感应重熔+强制冷却复合技术研制了定向结构Ni60/Cu复合涂层。研究了Cu对Ni60定向结构涂层微观组织、物相演变、硬度和磨损性能的影响。结果表明:Cu的添加使Ni基合金定向结构涂层的组织更加致密,Cu主要富集在晶粒内部,生成了稳定的Cu3.8Ni相,Cu元素的溶解、扩散和反应使涂层组织得到显著细化。Cu元素引入尽管使涂层的硬度得到降低,但赋予了涂层减摩耐磨综合性能,使涂层耐磨性能得到显著提高。Cu元素引入的Ni60定向结构涂层显示出窄而浅的光滑磨痕,其磨损率仅约为纯Ni60定向结构涂层的50.8%。
  • Research Article

    Effect of Cu addition on the microstructure and tribological performance of Ni60 directional structure coating

    + Author Affiliations
    • The Ni60/15wt% Cu directional structure coating was prepared by the composite technology of flame spraying, induction remelting, and forced cooling, and the effect of Cu on the microstructure, phase, hardness, and wear performance of Ni60 coatings was investigated. Results showed that Cu addition makes the microstructure of Ni60 directional structure coating more compact, and Cu is mainly enriched within the crystal grain, resulting in the formation of Cu3.8Ni as the bonding phase. Compared with Ni60 directional structure coating, Ni60/Cu directional structure coating has a lower hardness, lower friction coefficient, and lower wear rate, which indicate that Cu can effectively enhance the antifriction performance of Ni60 directional structure coating.
    • loading
    • [1]
      S.M. Muthu, M. Arivarasu, T.H. Krishna, S. Ganguly, K.V.P. Prabhakar, and S. Mohanty, Improvement in hot corrosion resistance of dissimilar alloy 825 and AISI 321 CO2-laser weldment by HVOF coating in aggressive salt environment at 900°C, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1536. doi: 10.1007/s12613-020-2014-3
      [2]
      C. Navas, R. Colaço, J. de Damborenea, and R. Vilar, Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings, Surf. Coat. Technol., 200(2006), No. 24, p. 6854. doi: 10.1016/j.surfcoat.2005.10.032
      [3]
      X.T. Yang, X.Q. Li, Q.B. Yang, H.L. Wei, X.Y. Fu, and W.S. Li, Effects of WC on microstructure and corrosion resistance of directional structure Ni60 coatings, Surf. Coat. Technol., 385(2020), art. No. 125359. doi: 10.1016/j.surfcoat.2020.125359
      [4]
      X.Y. Wang, S.F. Zhou, X.Q. Dai, et al., Evaluation and mechanisms on heat damage of WC particles in Ni60/WC composite coatings by laser induction hybrid cladding, Int. J. Refract. Met. Hard Mater., 64(2017), p. 234. doi: 10.1016/j.ijrmhm.2016.11.001
      [5]
      Z.H. Wen, Y. Bai, J.F. Yang, and J. Huang, Effect of vacuum re-melting on the solid particles erosion behavior of Ni60–NiCrMoY composite coatings prepared by plasma spraying, Vacuum, 134(2016), p. 73. doi: 10.1016/j.vacuum.2016.09.020
      [6]
      E. Rabinowicz and R.I. Tanner, Friction and wear of materials, J. Appl. Mech., 33(1995), No. 2, p. 479.
      [7]
      H.D.V. Mejía, D. Perea, and G.B. Gilberto, Development and characterization of TiAlN (Ag, Cu) nanocomposite coatings deposited by DC magnetron sputtering for tribological applications, Surf. Coat. Technol., 381(2020), art. No. 125095. doi: 10.1016/j.surfcoat.2019.125095
      [8]
      J.W. Zhang, Y.X. Wang, S.G. Zhou, et al., Tailoring self-lubricating, wear-resistance, anticorrosion and antifouling properties of Ti/(Cu, MoS2)–DLC coating in marine environment by controlling the content of Cu dopant, Tribol. Int., 143(2020), art. No. 106029. doi: 10.1016/j.triboint.2019.106029
      [9]
      J.C. Ding, T.F. Zhang, Z.X. Wan, et al., Influence of Cu content on the microstructure and mechanical properties of Cr–Cu–N coatings, Scanning, 2018(2018), art. No. 6491279.
      [10]
      H.J. Zhao, F.F. Guo, L.Y. Zhu, J.N. He, and F.X. Yin, The effect of Cu addition on the crystallization behavior and tribological properties of reactive plasma sprayed TiCN–Cu coatings, Ceram. Int., 46(2020), No. 6, p. 8344. doi: 10.1016/j.ceramint.2019.12.066
      [11]
      H.J. Mei, R. Wang, X. Zhong, W. Dai, and Q.M. Wang, Influence of nitrogen partial pressure on microstructure and tribological properties of Mo–Cu–V–N composite coatings with high Cu content, Coatings, 8(2018), No. 1, art. No. 24. doi: 10.3390/coatings8010024
      [12]
      E.B. Moustafa and M.A. Taha, Evaluation of the microstructure, thermal and mechanical properties of Cu/SiC nanocomposites fabricated by mechanical alloying, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 475. doi: 10.1007/s12613-020-2176-z
      [13]
      Z.T. Li, Y.X. Wu, B.S. Zhuang, et al., Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity, Appl. Energy, 206(2017), p. 1147. doi: 10.1016/j.apenergy.2017.10.046
      [14]
      H.J. Mei, D.S. Geng, R. Wang, et al., Effect of Cu doping on the microstructure and mechanical properties of AlTiVN–Cu nanocomposite coatings, Surf. Coat. Technol., 402(2020), art. No. 126490. doi: 10.1016/j.surfcoat.2020.126490
      [15]
      Q.Z. Wang, Y.S. Ding, F. Zhou, and J.Z. Kong, Comparison of mechanical and tribological properties of Ni–CrSiN and Cu–CrSiN coatings via thermal-cold cycling treatment, Surf. Coat. Technol., 400(2020), art. No. 126232. doi: 10.1016/j.surfcoat.2020.126232
      [16]
      X. Xu, F.H. Su, and Z.J. Li, Microstructure and tribological behaviors of MoN–Cu nanocomposite coatings sliding against Si3N4 ball under dry and oil-lubricated conditions, Wear, 434-435(2019), art. No. 202994. doi: 10.1016/j.wear.2019.202994
      [17]
      V.A. Frolov, V.A. Poklad, B.V. Ryabenko, and D.V. Viktorenkov, Technological special features of methods of supersonic thermal spraying, Weld. Int., 21(2007), No. 4, p. 315. doi: 10.1080/09507110701412047
      [18]
      C.R. Si, B.B. Duan, Q. Zhang, J. Cai, and W.C. Wu, Microstructure, corrosion-resistance, and wear-resistance properties of subsonic flame sprayed amorphous Fe–Mo–Cr–Co coating with extremely high amorphous rate, J. Mater. Res. Technol., 9(2020), No. 3, p. 3292. doi: 10.1016/j.jmrt.2020.01.024
      [19]
      Z. Bergant and J. Grum, Quality improvement of flame sprayed, heat treated, and remelted NiCrBSi coatings, J. Therm. Spray Technol., 18(2009), No. 3, p. 380. doi: 10.1007/s11666-009-9304-7
      [20]
      J. Yu and H.F. Yu, Coating properties, energy consumption, and cost analysis of the induction cladding process, Results Phys., 17(2020), art. No. 103043. doi: 10.1016/j.rinp.2020.103043
      [21]
      J.B. Chen, Y.C. Dong, L.N. Wan, et al., Effect of induction remelting on the microstructure and properties of in situ TiN-reinforced NiCrBSi composite coatings, Surf. Coat. Technol., 340(2018), p. 159. doi: 10.1016/j.surfcoat.2018.02.024
      [22]
      T.S. Dong, L. Liu, G.L. Li, R. Wang, J.M. Yuan, and Y. Feng, Effect of induction remelting on microstructure and wear resistance of plasma sprayed NiCrBSiNb coatings, Surf. Coat. Technol., 364(2019), p. 347. doi: 10.1016/j.surfcoat.2019.02.083
      [23]
      H.L. Wang, Q. Wang, L.C. Zeng, H.L. Zhang, and H.S. Ding, Microstructure, mechanical and tribological performances of a directionally solidified γ-TiAl alloy, Mater. Charact., 179(2021), art. No. 111393. doi: 10.1016/j.matchar.2021.111393
      [24]
      X. Zhan, D. Wang, Z.C. Ge, et al., Microstructural evolution of NiCoCrAlY coated directionally solidified superalloy, Surf. Coat. Technol., 440(2022), art. No. 128487. doi: 10.1016/j.surfcoat.2022.128487
      [25]
      X.T. Yang, P.C. Wang, X. Li, Y. Lu, and R.Z. Xiao, Evolution characteristics of microstructure of Ni-based alloy coatings and their properties under complex process, Rare Met. Mater. Eng., 46(2017), No. 3, p. 693.
      [26]
      P.C. Wang, Y. Lu, X.T. Yang, R.Z. Xiao, and X.W. Yang, Effect of forced cooling on microstructure of induction remelting Ni60 alloy coating, Chin. J. Nonferrous Met., 26(2016), No. 2, p. 375.
      [27]
      J.N. Balaraju, C. Anandan, and K.S. Rajam, Influence of codeposition of copper on the structure and morphology of electroless Ni–W–P alloys from sulphate- and chloride-based baths, Surf. Coat. Technol., 200(2006), No. 12-13, p. 3675. doi: 10.1016/j.surfcoat.2004.09.010
      [28]
      Y.N. Cao, Y.Q. Xia, B.Y. Duan, W.X. Mu, X. Tan, and H. Wu, Microstructure evolution and anti-wear mechanism of Cu film fabricated by magnetron sputtering deposition, Mater. Lett., 315(2022), art. No. 131941. doi: 10.1016/j.matlet.2022.131941
      [29]
      H. Tan, Y.B. Guo, D.G. Wang, and Y.J. Cui, The development of a Cu@Graphite solid lubricant with excellent anti-friction and wear resistant performances in dry condition, Wear, 488-489(2022), art. No. 204181. doi: 10.1016/j.wear.2021.204181
      [30]
      T. Kalfhaus, H. Schaar, F. Thaler, et al., Path to single-crystalline repair and manufacture of Ni-based superalloy using directional annealing, Surf. Coat. Technol., 405(2021), art. No. 126494. doi: 10.1016/j.surfcoat.2020.126494
      [31]
      M.Z. Alam, D.V.V. Satyanarayana, D. Chatterjee, R. Sarkar, and D.K. Das, Creep behavior of Pt-aluminide (PtAl) coated directionally solidified Ni-based superalloy CM–247LC after thermal exposure, Mater. Sci. Eng. A, 641(2015), p. 84. doi: 10.1016/j.msea.2015.06.011
      [32]
      B.B. Yang, Y.H. Hou, Q. Lei, Y.P. Li, and A. Chiba, Influence of Cu addition on corrosion behavior and tensile performance of Ni–30Co–16Cr–15Mo–6Fe alloy, Mater. Charact., 161(2020), art. No. 110140. doi: 10.1016/j.matchar.2020.110140
      [33]
      H. Shi, J.H. Yang, and W.H. Lai, Influence of Cu addition on properties and microstructure of WC–13%Fe/Co/Ni cemented carbides, Powder Metall. Technol., 13(1995), No. 3, p. 174.
      [34]
      X.Z. Liu, Q.W. Shen, X.Z. Liu, J. Chen, L.W. Zhu, and J. Qi, Effect of heat treatment temperature on the spectral properties of Cu–Ni coating, Spectrosc. Spect. Anal., 35(2015), No. 4, p. 1094.
      [35]
      C. Cao, D.B. Chen, X.Y. Fang, et al., Effects of Cu addition on the microstructure and properties of the Al–Mn–Fe–Si alloy, J. Alloys Compd., 834(2020), art. No. 155175. doi: 10.1016/j.jallcom.2020.155175
      [36]
      L. Venkatesh, I. Samajdar, M. Tak, et al., Microstructure and phase evolution in laser clad chromium carbide–NiCrMoNb, Appl. Surf. Sci., 357(2015), p. 2391. doi: 10.1016/j.apsusc.2015.09.260
      [37]
      Y. Deo, S. Guha, K. Sarkar, P. Mohanta, D. Pradhan, and A. Mondal, Electrodeposited Ni–Cu alloy coatings on mild steel for enhanced corrosion properties, Appl. Surf. Sci., 515(2020), art. No. 146078. doi: 10.1016/j.apsusc.2020.146078
      [38]
      X.T. Yang, J.L. Duan, and X.Y. Fu, Directional crystal structure characteristics of Ni60/high-aluminum bronze composite coating, J. Harbin Eng. Univ., 39(2018), No. 12, p. 2068.
      [39]
      L.W. Xu, N. Lin, C. Ma, Z.Y. Wang, X.Y. Kang, and Y.H. He, Effect of Cu addition on the microstructures and properties of ultrafine Ti(C, N)-based cermet, Vacuum, 181(2020), art. No. 109753. doi: 10.1016/j.vacuum.2020.109753
      [40]
      X.T. Yang, X.Y. Fu, J.L. Duan, X.Q. Li, H.L. Wei, and W.S. Li, Microstructure and wear resistance of directionally solidified Ni60/aluminum bronze coating after spraying, Surf. Technol., 48(2019), No. 1, p. 182.
      [41]
      G. Liu, D. Du, K.M. Wang, Z. Pu, D.Q. Zhang, and B.H. Chang, Microstructure and wear behavior of IC10 directionally solidified superalloy repaired by directed energy deposition, J. Mater. Sci. Technol., 93(2021), p. 71. doi: 10.1016/j.jmst.2021.04.006
      [42]
      F. Bertelli, E.S. Freitas, N. Cheung, et al., Microstructure, tensile properties and wear resistance correlations on directionally solidified Al–Sn–(Cu; Si) alloys, J. Alloys Compd., 695(2017), p. 3621. doi: 10.1016/j.jallcom.2016.11.399
      [43]
      Y. Wang, X.X. Lu, N.Y. Yuan, and J.N. Ding, A novel nickel–copper alternating-deposition coating with excellent tribological and antibacterial property, J. Alloys Compd., 849(2020), art. No. 156222. doi: 10.1016/j.jallcom.2020.156222
      [44]
      Y.S. Zhang, Z. Han, K. Wang, and K. Lu, Friction and wear behaviors of nanocrystalline surface layer of pure copper, Wear, 260(2006), No. 9-10, p. 942. doi: 10.1016/j.wear.2005.06.010
      [45]
      J. Feng, K.X. Song, S.H. Liang, X.H. Guo, and Y.H. Jiang, Electrical wear of TiB2 particle-reinforced Cu and Cu–Cr composites prepared by vacuum arc melting, Vacuum, 175(2020), art. No. 109295. doi: 10.1016/j.vacuum.2020.109295
      [46]
      Z. Jian, X.J. Tan, Y. Hu, L. Guo, Q.M. Zhang, and S.H. Liu, Microstructure and high power fiber laser cladding Ni60A coating, Chin. J. Nonferrous Met., 24(2015), No. 6, p. 1441.
      [47]
      S.S.F. de Dafé, S.D.C. Paolinelli, and A.B. Cota, Influence of thermomechanical processing on shear bands formation and magnetic properties of a 3% Si non-oriented electrical steel, J. Magn. Magn. Mater., 323(2011), No. 24, p. 3234. doi: 10.1016/j.jmmm.2011.07.015

    Catalog


    • /

      返回文章
      返回