留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 5
May  2023

图(9)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  553
  • HTML全文浏览量:  256
  • PDF下载量:  117
  • 被引次数: 0
Qiang Zhang, Yongsheng Sun, Yuexin Han, Yanjun Li, and Peng Gao, Reaction behavior and non-isothermal kinetics of suspension magnetization roasting of limonite and siderite, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 824-833. https://doi.org/10.1007/s12613-022-2523-3
Cite this article as:
Qiang Zhang, Yongsheng Sun, Yuexin Han, Yanjun Li, and Peng Gao, Reaction behavior and non-isothermal kinetics of suspension magnetization roasting of limonite and siderite, Int. J. Miner. Metall. Mater., 30(2023), No. 5, pp. 824-833. https://doi.org/10.1007/s12613-022-2523-3
引用本文 PDF XML SpringerLink
研究论文

褐铁矿和菱铁矿悬浮磁化焙烧反应行为及非等温动力学

  • 通讯作者:

    孙永升    E-mail: yongshengsun@mail.neu.edu.cn

文章亮点

  • (1) 菱铁矿作为悬浮磁化焙烧清洁还原剂用于褐铁矿的低碳开发利用
  • (2) 悬浮磁化焙烧过程中菱铁矿热解产物CO还原新生赤铁矿为磁铁矿
  • (3) 最佳条件下获得铁含量65.92wt%、铁回收率98.54wt%的铁精矿
  • 为实现褐铁矿资源的低碳开发利用,本研究提出以菱铁矿作为清洁还原剂用于褐铁矿的磁化焙烧。在菱铁矿用量40wt%、焙烧温度700°C、焙烧时间10 min的最佳悬浮磁化焙烧条件下,磁选可以获得铁精矿铁品位65.92wt%、铁回收率98.54wt%的良好指标。磁性分析表明,悬浮磁化焙烧实现了弱磁性铁矿物向强磁性铁矿物的转化,从而实现了通过弱磁选回收铁矿物。相变分析表明,在悬浮磁化焙烧过程中,褐铁矿首先脱水并转化为赤铁矿,然后菱铁矿分解生成磁铁矿和CO,其中CO将新形成的赤铁矿还原为磁铁矿。微观结构演化分析显示,新生磁铁矿颗粒疏松多孔,颗粒结构明显破坏,有利于后续磨矿。非等温动力学分析结果表明,褐铁矿和菱铁矿之间的主要反应符合二维扩散机制,表明反应过程主要受CO扩散控制。试验结果为使用菱铁矿作为悬浮磁化焙烧的清洁还原剂提供了理论依据。
  • Research Article

    Reaction behavior and non-isothermal kinetics of suspension magnetization roasting of limonite and siderite

    + Author Affiliations
    • In order to develop limonite and decrease CO2 emissions, siderite is proposed as a clean reductant for suspension magnetization roasting (SMR) of limonite. An iron concentrate (iron grade: 65.92wt%, iron recovery: 98.54wt%) was obtained by magnetic separation under the optimum SMR conditions: siderite dosage 40wt%, roasting temperature 700°C, roasting time 10 min. According to the magnetic analysis, SMR achieved the conversion of weak magnetic minerals to strong magnetic minerals, thus enabling the recovery of iron via magnetic separation. Based on the phase transformation analysis, during the SMR process, limonite was first dehydrated and converted to hematite, and then siderite decomposed to generate magnetite and CO, where CO reduced the freshly formed hematite to magnetite. The microstructure evolution analysis indicated that the magnetite particles were loose and porous with a destroyed structure, making them easier to be ground. The non-isothermal kinetic results show that the main reaction between limonite and siderite conformed to the two-dimension diffusion mechanism, suggesting that the diffusion of CO controlled the reaction. These results encourage the application of siderite as a reductant in SMR.
    • loading
    • [1]
      Y.T. Song, N. Wang, and A.Q. Yu, Temporal and spatial evolution of global iron ore supply-demand and trade structure, Resour. Policy, 64(2019), art. No. 101506. doi: 10.1016/j.resourpol.2019.101506
      [2]
      X.Q. Hao, H.Z. An, X.Q. Sun, and W.Q. Zhong, The import competition relationship and intensity in the international iron ore trade: From network perspective, Resour. Policy, 57(2018), p. 45. doi: 10.1016/j.resourpol.2018.01.005
      [3]
      S.K. Roy, D. Nayak, N. Dash, N. Dhawan, and S.S. Rath, Microwave-assisted reduction roasting—Magnetic separation studies of two mineralogically different low-grade iron ores, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1449. doi: 10.1007/s12613-020-1992-5
      [4]
      W.T. Zhou, Y.X. Han, Y.S. Sun, and Y.J. Li, Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 443. doi: 10.1007/s12613-019-1897-3
      [5]
      S.K. Roy, D. Nayak, and S.S. Rath, A review on the enrichment of iron values of low-grade iron ore resources using reduction roasting-magnetic separation, Powder Technol., 367(2020), p. 796. doi: 10.1016/j.powtec.2020.04.047
      [6]
      J.W. Yu, Y.X. Han, Y.J. Li, and P. Gao, Recent advances in magnetization roasting of refractory iron ores: A technological review in the past decade, Miner. Process. Extr. Metall. Rev., 41(2020), No. 5, p. 349. doi: 10.1080/08827508.2019.1634565
      [7]
      J. Godin, W.Z. Liu, S. Ren, and C.C. Xu, Advances in recovery and utilization of carbon dioxide: A brief review, J. Environ. Chem. Eng., 9(2021), No. 4, art. No. 105644. doi: 10.1016/j.jece.2021.105644
      [8]
      Q. Zhang, Y.S. Sun, Y.X. Han, and Y.J. Li, Pyrolysis behavior of a green and clean reductant for suspension magnetization roasting, J. Clean. Prod., 268(2020), art. No. 122173. doi: 10.1016/j.jclepro.2020.122173
      [9]
      Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
      [10]
      J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
      [11]
      D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, art. No. 1900108. doi: 10.1002/srin.201900108
      [12]
      W.G. Du, S. Yang, F. Pan, et al., Hydrogen reduction of hematite ore fines to magnetite ore fines at low temperatures, J. Chem., 2017(2017), art. No. 1919720. doi: 10.1155/2017/1919720
      [13]
      S. Yuan, H.X. Xiao, T.Y. Yu, Y.J. Li, and P. Gao, Enhanced removal of iron minerals from high-iron bauxite with advanced roasting technology for enrichment of aluminum, Powder Technol., 372(2020), p. 1. doi: 10.1016/j.powtec.2020.05.112
      [14]
      M. Samouhos, M. Taxiarchou, G. Pilatos, P.E. Tsakiridis, E. Devlin, and M. Pissas, Controlled reduction of red mud by H2 followed by magnetic separation, Miner. Eng., 105(2017), p. 36. doi: 10.1016/j.mineng.2017.01.004
      [15]
      W.B. Li, Y.X. Han, X. Liu, Y.S. Shan, and Y.J. Li, Effect of fluidized magnetizing roasting on iron recovery and transformation of weakly magnetic iron mineral phase in iron tailings, Physicochem. Probl. Miner. Process., 55(2019), 4, p. 906. doi: 10.5277/ppmp19010
      [16]
      A.M. Abdalla, S. Hossain, O.B. Nisfindy, A.T. Azad, M. Dawood, and A.K. Azad, Hydrogen production, storage, transportation and key challenges with applications: A review, Energy Convers. Manage., 165(2018), p. 602. doi: 10.1016/j.enconman.2018.03.088
      [17]
      X.B. Mao, R.S. Ying, Y.P. Yuan, F. Li, and B.Y. Shen, Simulation and analysis of hydrogen leakage and explosion behaviors in various compartments on a hydrogen fuel cell ship, Int. J. Hydrogen Energy, 46(2021), No. 9, p. 6857. doi: 10.1016/j.ijhydene.2020.11.158
      [18]
      D. Cholico-González, N.O. Lara, M.A.S. Miranda, R.M. Estrella, R.E. García, and C.A.L. Patiño, Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 603. doi: 10.1007/s12613-020-2079-z
      [19]
      S.S. Rath and D.S. Rao, Dolochar as a reductant in the reduction roasting of iron ore slimes, Int. J. Miner. Metall. Mater., 24(2017), No. 12, p. 1341. doi: 10.1007/s12613-017-1526-y
      [20]
      S.S. Rath, D.S. Rao, A. Tripathy, and S.K. Biswal, Biomass briquette as an alternative reductant for low grade iron ore resources, Biomass Bioenergy, 108(2018), p. 447. doi: 10.1016/j.biombioe.2017.10.045
      [21]
      D. Nayak, N. Dash, N. Ray, and S.S. Rath, Utilization of waste coconut shells in the reduction roasting of overburden from iron ore mines, Powder Technol., 353(2019), p. 450. doi: 10.1016/j.powtec.2019.05.053
      [22]
      Y. Wu, M. Fang, L.D. Lan, P. Zhang, K.V. Rao, and Z.Y. Bao, Rapid and direct magnetization of goethite ore roasted by biomass fuel, Sep. Purif. Technol., 94(2012), p. 34. doi: 10.1016/j.seppur.2012.04.008
      [23]
      K. Zhang, Y. Ge, W.C. Guo, et al., Phase transition and magnetic properties of low-grade limonite during reductive roasting, Vacuum, 167(2019), p. 163. doi: 10.1016/j.vacuum.2019.05.038
      [24]
      V.P. Ponomar, N.O. Dudchenko, and A.B. Brik, Reduction roasting of hematite to magnetite using carbohydrates, Int. J. Miner. Process., 164(2017), p. 21. doi: 10.1016/j.minpro.2017.05.005
      [25]
      S.S. Rath, D.S. Rao, and B.K. Mishra, A novel approach for reduction roasting of iron ore slime using cow dung, Int. J. Miner. Process., 157(2016), p. 216. doi: 10.1016/j.minpro.2016.11.015
      [26]
      L.A. Zainullin, A.Y. Epishin, D.A. Artov, V.G. Karelin, and N.A. Spirin, High-temperature carbothermal reduction of siderite ore in an electric arc, Metallurgist, 60(2017), No. 11-12, p. 1135. doi: 10.1007/s11015-017-0418-8
      [27]
      T. Rehren, J. Schneider, and C. Bartels, Medieval lead-silver smelting in the Siegerland, West Germany, Hist. Metall., 33(1999), No. 2, p. 73.
      [28]
      C.J. Dixon, The Helen Iron Deposit—Canada, [in] Atlas of Economic Mineral Deposits, Springer, Dordrecht, 1979, p. 62.
      [29]
      B.B. Xing, T.H. Chen, H.B. Liu, C.S. Qing, J.J. Xie, and Q.Q. Xie, Removal of phosphate from aqueous solution by activated siderite ore: Preparation, performance and mechanism, J. Taiwan Inst. Chem. Eng., 80(2017), p. 875. doi: 10.1016/j.jtice.2017.07.016
      [30]
      Y.S. Sun, X.R. Zhu, Y.X. Han, and Y.J. Li, Green magnetization roasting technology for refractory iron ore using siderite as a reductant, J. Clean. Prod., 206(2019), p. 40. doi: 10.1016/j.jclepro.2018.09.113
      [31]
      T.J. Chun, D.Q. Zhu, and J. Pan, Simultaneously roasting and magnetic separation to treat low grade siderite and hematite ores, Miner. Process. Extr. Metall. Rev., 36(2015), No. 4, p. 223. doi: 10.1080/08827508.2014.928620
      [32]
      X.R. Zhu, Y.X. Han, Y.S. Sun, Y.J. Li, and H.W. Wang, Siderite as a novel reductant for clean utilization of refractory iron ore, J. Clean. Prod., 245(2020), art. No. 118704. doi: 10.1016/j.jclepro.2019.118704
      [33]
      S. Xue, S. Zhang, Y. Mao, H. Li, D. Wang, and H. Zhao, Research on magnetization roasting technology for siderite and limonite in rotary kiln, [in] Proceedings of the 8th CSM Steel Congress, Shanghai, 2011.
      [34]
      V.P. Ponomar, N.O. Dudchenko, and A.B. Brik, Synthesis of magnetite powder from the mixture consisting of siderite and hematite iron ores, Miner. Eng., 122(2018), p. 277. doi: 10.1016/j.mineng.2018.04.018
      [35]
      S. Mishra, Review on reduction kinetics of iron ore–coal composite pellet in alternative and sustainable ironmaking, J. Sustainable Metall., 6(2020), No. 4, p. 541. doi: 10.1007/s40831-020-00299-y
      [36]
      Q. Zhang, Y.S. Sun, Y.X. Han, Y.J. Li, and P. Gao, Producing magnetite concentrate via self-magnetization roasting in N2 atmosphere: Phase and structure transformation, and extraction kinetics, J. Ind. Eng. Chem., 104(2021), p. 571. doi: 10.1016/j.jiec.2021.09.008
      [37]
      Y.S. Sun, X.R. Zhu, Y.X. Han, Y.J. Li, and P. Gao, Iron recovery from refractory limonite ore using suspension magnetization roasting: A pilot-scale study, J. Clean. Prod., 261(2020), art. No. 121221. doi: 10.1016/j.jclepro.2020.121221
      [38]
      S. Yuan, W.T. Zhou, Y.X. Han, and Y.J. Li, Selective enrichment of iron from fine-grained complex limonite using suspension magnetization roasting followed by magnetic separation, Sep. Sci. Technol., 55(2020), No. 18, p. 3427. doi: 10.1080/01496395.2019.1677715
      [39]
      W.Z. Du, G. Wang, Y. Wang, and X.L. Liu, Thermal degradation of bituminous coal with both model-free and model-fitting methods, Appl. Therm. Eng., 152(2019), p. 169. doi: 10.1016/j.applthermaleng.2019.02.092
      [40]
      S. Singh, T. Patil, S.P. Tekade, M.B. Gawande, and A.N. Sawarkar, Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis, Sci. Total Environ., 783(2021), art. No. 147004. doi: 10.1016/j.scitotenv.2021.147004
      [41]
      W.C. He, X.W. Lü, C.Y. Ding, and Z.M. Yan, Oxidation pathway and kinetics of titania slag powders during cooling process in air, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 981. doi: 10.1007/s12613-020-2019-y
      [42]
      M.X. Huang, S.C. Lv, and C.R. Zhou, Thermal decomposition kinetics of glycine in nitrogen atmosphere, Thermochim. Acta, 552(2013), p. 60. doi: 10.1016/j.tca.2012.11.006
      [43]
      L.T. Kamel, Non-isothermal decomposition kinetics of theobromine in nitrogen atmosphere, Eur. J. Chem., 6(2015), No. 2, p. 199. doi: 10.5155/eurjchem.6.2.199-203.1249
      [44]
      F. Škvára and J. Šesták, Computer calculation of the mechanism and associated kinetic data using a non-isothermal integral method, J. Therm. Anal., 8(1975), No. 3, p. 477. doi: 10.1007/BF01910127
      [45]
      F. Liu and M.Z. Lan, Effects of gypsum on cementitious systems with different mineral mixtures, [in] 3rd Mainland, Taiwan and Hong Kong Conference on Green Building Materials, Wuhan, 2012, p. 20.
      [46]
      H.Y. Zhao, Y.H. Li, Q. Song, et al., Catalytic reforming of volatiles from co-pyrolysis of lignite blended with corn straw over three different structures of iron ores, J. Anal. Appl. Pyrolysis, 144(2019), art. No. 104714. doi: 10.1016/j.jaap.2019.104714
      [47]
      P.W. Fang, Z.Q. Gong, Z.B. Wang, Z.T. Wang, and F.Z. Meng, Study on combustion and emission characteristics of microalgae and its extraction residue with TG-MS, Renewable Energy, 140(2019), p. 884. doi: 10.1016/j.renene.2019.03.114
      [48]
      B. Janković, S. Mentus, and D. Jelić, A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere, Phys. B Condens. Matter, 404(2009), No. 16, p. 2263. doi: 10.1016/j.physb.2009.04.024

    Catalog


    • /

      返回文章
      返回