留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(11)

数据统计

分享

计量
  • 文章访问数:  1339
  • HTML全文浏览量:  489
  • PDF下载量:  61
  • 被引次数: 0
Haichao Li, Zengwu Wei, Yu Xia, Junshan Han,  and Xing Li, Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 621-629. https://doi.org/10.1007/s12613-022-2525-1
Cite this article as:
Haichao Li, Zengwu Wei, Yu Xia, Junshan Han,  and Xing Li, Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 621-629. https://doi.org/10.1007/s12613-022-2525-1
引用本文 PDF XML SpringerLink
研究论文

壳聚糖衍生的碳膜用于水系锌电池锌阳极的保护层

  • 通讯作者:

    韩峻山    E-mail: jshan10@163.com

    李星    E-mail: lixing@nbu.edu.cn

文章亮点

  • (1) 系统研究了不同烧结温度对碳膜微观结构的影响。
  • (2) 开发出了能保持较长循环使用寿命和较好稳定性的水性锌电池。
  • (3) 制备的碳膜能有效诱导锌离子的均匀沉积和抑制枝晶生长。
  • 水系锌电池(ZBs)具有成本低、安全性高等优点,被认为是最有前景的储能装置。然而,在放电和充电的过程中,负极上的异常生长的锌枝晶导致其较差的循环稳定性和低库伦效率低。壳聚糖是一种天然的富含氮和碳的氨基多糖。当高温烧结时,形成的碳膜具有优异的导电性和石墨化程度,碳膜可以增强锌离子均匀沉积的性能。本文以壳聚糖为原料,通过烧结制备了一种碳膜,并将其作为水系锌电池电极的保护层材料。结果表明,当采用800°C的烧结温度时,样品可以保持更光滑的表面,组装的电池在0.25 mA·cm−2的电流密度下可以循环使用达到700 h左右,远大于没有碳膜保护层的同类电池。
  • Research Article

    Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries

    + Author Affiliations
    • Aqueous zinc batteries with low cost and inherent safety are considered to be the most promising energy storage devices. However, they suffer from poor cycling stability and low coulombic efficiencies caused by the adverse zinc dendrites on the anodes during the discharging/charging processes. Chitosan is a kind of natural amino polysaccharide, which is rich in nitrogen and carbon. When sintered at high temperatures, carbon membranes have been achieved with excellent conductivity and graphitization degree, which could enhance the ability to induce zinc ion uniform deposition to some extent. In this work, a type of carbon membrane using chitosan as raw materials has been fabricated by sintering, and then assembled as the protect layers in aqueous zinc batteries. The results show that the samples could retain smoother surfaces when adopting the sintering temperature of 800°C, and the assembled batteries are able to achieve about 700 h at a current density of 0.25 mA·cm−2, which is far longer than those of the similar batteries without any carbon membranes.
    • loading
    • Supplementary Informations-s12613-022-2525-1.doc
    • [1]
      Z.Y. Feng, W.J. Peng, Z.X. Wang, et al., Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1549. doi: 10.1007/s12613-021-2335-x
      [2]
      N. Li, S.Q. Yang, H.S. Chen, S.Q. Jiao, and W.L. Song, Mechano-electrochemical perspectives on flexible lithium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1019. doi: 10.1007/s12613-022-2486-4
      [3]
      X.H. Qin, Y.H. Du, P.C. Zhang, et al., Layered Barium vanadate nanobelts for high-performance aqueous zinc-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1684. doi: 10.1007/s12613-021-2312-4
      [4]
      A. Samanta and C.R. Raj, Bifunctional nitrogen-doped hybrid catalyst based on onion-like carbon and graphitic carbon encapsulated transition metal alloy nanostructure for rechargeable zinc-air battery, J. Power Sources, 455(2020), art. No. 227975. doi: 10.1016/j.jpowsour.2020.227975
      [5]
      Q. Guan, Y.P. Li, X.X. Bi, et al., Dendrite-free flexible fiber-shaped Zn battery with long cycle life in water and air, Adv. Energy Mater., 9(2019), No. 41, art. No. 1901434. doi: 10.1002/aenm.201901434
      [6]
      Z.M. Zhao, J.W. Zhao, Z.L. Hu, et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase, Energy Environ. Sci., 12(2019), No. 6, p. 1938. doi: 10.1039/C9EE00596J
      [7]
      J.F. Parker, C.N. Chervin, I.R. Pala, et al., Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion, Science, 356(2017), No. 6336, p. 415. doi: 10.1126/science.aak9991
      [8]
      M. Song, H. Tan, D.L. Chao, and H.J. Fan, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1802564. doi: 10.1002/adfm.201802564
      [9]
      L.T. Kang, M.W. Cui, F.Y. Jiang, et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries, Adv. Energy Mater., 8(2018), No. 25, art. No. 1801090. doi: 10.1002/aenm.201801090
      [10]
      Y.X. Zeng, X.Y. Zhang, R.F. Qin, et al., Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries, Adv. Mater., 31(2019), No. 36, art. No. 1903675. doi: 10.1002/adma.201903675
      [11]
      L.S. Wu and Y.F. Dong, Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries, Energy Storage Mater., 41(2021), p. 715. doi: 10.1016/j.ensm.2021.07.004
      [12]
      Y.J. Qiao, H. Zhang, Y.X. Hu, et al., A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1611. doi: 10.1007/s12613-021-2266-6
      [13]
      X.Y. Zhao, X.Q. Liang, Y. Li, Q.G. Chen, and M.H. Chen, Challenges and design strategies for high performance aqueous zinc ion batteries, Energy Storage Mater., 42(2021), p. 533. doi: 10.1016/j.ensm.2021.07.044
      [14]
      P. Akbarzadeh and N. Koukabi, Easy conversion of nitrogen-rich silk cocoon biomass to magnetic nitrogen-doped carbon nanomaterial for supporting of Palladium and its application, Appl. Organomet. Chem., 35(2021), No. 1, art. No. e6039.
      [15]
      D.H. Tian, Z.C. Han, M.Y. Wang, and S.Q. Jiao, Direct electrochemical N-doping to carbon paper in molten LiCl–KCl–Li3N, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1687. doi: 10.1007/s12613-020-2026-z
      [16]
      H.Q. Tang, C. Chen, T. Liu, and Z.Y. Tang, Chitosan and chitosan oligosaccharide: Advanced carbon sources are used for preparation of N-doped carbon-coated Li2ZnTi3O8 anode material, J. Electroanal. Chem., 858(2020), art. No. 113789. doi: 10.1016/j.jelechem.2019.113789
      [17]
      Y. Zhang, S.J. Deng, Y.H. Li, et al., Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn–MnO2 batteries, Energy Storage Mater., 29(2020), p. 52. doi: 10.1016/j.ensm.2020.04.003
      [18]
      L.S. Wu, Y. Zhang, P. Shang, Y.F. Dong, and Z.S. Wu, Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes, J. Mater. Chem. A, 9(2021), No. 48, p. 27408. doi: 10.1039/D1TA08697A
      [19]
      Y.L. Huang, W.Y. He, P. Zhang, and X.H. Lu, Nitrogen-doped MnO2 nanorods as cathodes for high-energy Zn–MnO2 batteries, Funct. Mater. Lett., 11(2018), No. 6, art. No. 1840006. doi: 10.1142/S1793604718400064
      [20]
      C.P. Wu, K.X. Xie, K.X. Ren, S. Yang, and Q.H. Wang, Dendrite-free Zn anodes enabled by functional nitrogen-doped carbon protective layers for aqueous zinc-ion batteries, Dalton Trans., 49(2020), No. 48, p. 17629. doi: 10.1039/D0DT03459B
      [21]
      H. Zhang, Y. Yang, D.S. Ren, L. Wang, and X.M. He, Graphite as anode materials: Fundamental mechanism, recent progress and advances, Energy Storage Mater., 36(2021), p. 147. doi: 10.1016/j.ensm.2020.12.027
      [22]
      D.S. Ruan, K. Zou, K. Du, et al., Recycling of graphite anode from spent lithium-ion batteries for preparing Fe–N-doped carbon ORR catalyst, ChemCatChem, 13(2021), No. 8, p. 2025. doi: 10.1002/cctc.202001867
      [23]
      H.J. Qiu, P. Du, K.L. Hu, et al., Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries, Adv. Mater., 31(2021), No. 19, art. No. 1900843.
      [24]
      X. Gao, H.W. Wu, W.J. Li, et al., H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery, Small, 16(2020), No. 5, art. No. 1905842. doi: 10.1002/smll.201905842
      [25]
      C.G. Li, X.D. Zhang, W. He, G.G. Xu, and R. Sun, Cathode materials for rechargeable zinc-ion batteries: From synthesis to mechanism and applications, J. Power Sources, 449(2020), art. No. 227596. doi: 10.1016/j.jpowsour.2019.227596
      [26]
      G.Z. Li, Z.X. Huang, J.B. Chen, et al., Rechargeable Zn-ion batteries with high power and energy densities: A two-electron reaction pathway in birnessite MnO2 cathode materials, J. Mater. Chem. A, 8(2020), No. 4, p. 1975. doi: 10.1039/C9TA11985J
      [27]
      D.L. Chao, W.H. Zhou, C. Ye, et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage, Angew. Chem., 131(2019), No. 23, p. 7905. doi: 10.1002/ange.201904174
      [28]
      G. Marciniuk, R.T. Ferreira, A.V. Pedroso, et al., Enhancing hydrothermal formation of α-MnO2 nanoneedles over nanographite structures obtained by electrochemical exfoliation, Bull. Mater. Sci., 44(2021), No. 1, art. No. 62. doi: 10.1007/s12034-020-02336-8
      [29]
      G. Li, Z. Liu, Q. Huang, et al., Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects, Nat. Energy, 3(2018), No. 12, p. 1076. doi: 10.1038/s41560-018-0276-z
      [30]
      X.Y. Gao, W. Yin, and X.Q. Liu, Carbon nanotubes-based electrode for Zn ion batteries, Mater. Res. Bull., 138(2021), art. No. 111246. doi: 10.1016/j.materresbull.2021.111246
      [31]
      H.R. Jiang, M.C. Wu, Y.X. Ren, W. Shyy, and T.S. Zhao, Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries, Appl. Energy, 213(2018), p. 366. doi: 10.1016/j.apenergy.2018.01.061
      [32]
      Y.Y. Xu, P.L. Deng, G.D. Chen, et al., 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries, Adv. Funct. Mater., 30(2020), No. 6, art. No. 1906081. doi: 10.1002/adfm.201906081
      [33]
      S.J. Yi, X.P. Qin, C.H. Liang, et al., Insights into KMnO4 etched N-rich carbon nanotubes as advanced electrocatalysts for Zn-air batteries, Appl. Catal. B, 264(2020), art. No. 118537. doi: 10.1016/j.apcatb.2019.118537
      [34]
      Y.Z. Liu, X.W. Chi, Q. Han, et al., α-MnO2 nanofibers/carbon nanotubes hierarchically assembled microspheres: Approaching practical applications of high-performance aqueous Zn-ion batteries, J. Power Sources, 443(2019), art. No. 227244. doi: 10.1016/j.jpowsour.2019.227244
      [35]
      X.J. Yue, H.D. Liu, and P. Liu, Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries, Chem. Commun., 55(2019), No. 11, p. 1647. doi: 10.1039/C8CC10060H
      [36]
      P. Tan, B. Chen, H.R. Xu, et al., Nanoporous NiO/Ni(OH)2 plates incorporated with carbon nanotubes as active materials of rechargeable hybrid zinc batteries for improved energy efficiency and high-rate capability, J. Electrochem. Soc., 165(2018), No. 10, p. A2119. doi: 10.1149/2.0481810jes
      [37]
      J. Yu, J.D. Luo, H. Zhang, Z. Zhang, J.C. Wei, and Z.Y. Yang, Renewable agaric-based hierarchically porous cocoon-like MnO/Carbon composites enable high-energy and high-rate Li-ion batteries, Electrochim. Acta, 322(2019), art. No. 134757. doi: 10.1016/j.electacta.2019.134757
      [38]
      X. Wu, S. Chen, Y. Feng, et al., Microwave-assisted synthesis of carbon nanotubes threaded core–shell CoPx/Co–Nx–C@CNT and its performance as an efficient bifunctional oxygen catalyst for the rechargeable zinc-air battery, Mater. Today Phys., 9(2019), art. No. 100132. doi: 10.1016/j.mtphys.2019.100132
      [39]
      T.F. Li, M. Li, M.R. Zhang, et al., Immobilization of Fe3N nanoparticles within N-doped carbon nanosheet frameworks as a high-efficiency electrocatalyst for oxygen reduction reaction in Zn-air batteries, Carbon, 153(2019), p. 364. doi: 10.1016/j.carbon.2019.07.044
      [40]
      C.X. Liu, R. Li, W.J. Liu, G.Z. Shen, and D. Chen, Chitosan-assisted fabrication of a network C@V2O5 cathode for high-performance Zn-ion batteries, ACS Appl. Mater. Interfaces, 13(2021), No. 31, p. 37194. doi: 10.1021/acsami.1c09951
      [41]
      Y. Gao, X.T. Qiu, X.L. Wang, X.C. Chen, A.Q. Gu, and Z.L. Yu, Nitrogen-doped porous carbon microspheres for high-rate anode material in lithium-ion batteries, Nanotechnology, 31(2020), No. 15, art. No. 155702. doi: 10.1088/1361-6528/ab646c
      [42]
      K. Lu, H. Zhang, B. Song, W. Pan, H.Y. Ma, and J.T. Zhang, Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery, Electrochim. Acta, 296(2019), p. 755. doi: 10.1016/j.electacta.2018.11.131
      [43]
      M. Shu, X. Li, L.Q. Duan, M.T. Zhu, and X. Xin, Nitrogen-doped polymer nanofibers decorated with Co nanoparticles for uniform lithium nucleation/growth in lithium metal batteries, Nanoscale, 12(2020), No. 16, p. 8819. doi: 10.1039/D0NR01111H
      [44]
      J. Conder, C. Vaulot, C. Marino, C. Villevieille, and C.M. Ghimbeu, Chitin and chitosan—Structurally related precursors of dissimilar hard carbons for Na-ion battery, ACS Appl. Energy Mater., 2(2019), No. 7, p. 4841. doi: 10.1021/acsaem.9b00545
      [45]
      D.D. Yin, C. Han, X.J. Bo, J. Liu, and L.P. Guo, Prussian blue analogues derived iron–cobalt alloy embedded in nitrogen-doped porous carbon nanofibers for efficient oxygen reduction reaction in both alkaline and acidic solutions, J. Colloid Interface Sci., 533(2019), p. 578. doi: 10.1016/j.jcis.2018.08.118
      [46]
      J. Zhou, H. Wang, W. Yang, S.J. Wu, and W. Han, Sustainable nitrogen-rich hierarchical porous carbon nest for supercapacitor application, Carbohydr. Polym., 198(2018), p. 364. doi: 10.1016/j.carbpol.2018.06.095

    Catalog


    • /

      返回文章
      返回